Application of biocontrol products Bio P60 and Bio T10 as single or in combination in suppressing chili fruit anthracnose in the field

Main Article Content

Endang Mugiastuti
Fitrian Hidayat
Murti Wisnu Ragil Sastyawan
Ni Wayan Anik Leana
Loekas Soesanto

Abstract

This study aimed to evaluate the effectiveness of single or combined applications of Bio P60 and Bio T10 products in suppressing anthracnose disease in chili pepper under field conditions. The research was conducted at an altitude of 1200 m above sea level using a randomized block design with five treatments: control, chemical fungicide, Bio P60, Bio T10, and a combination of Bio P60 and Bio T10, each replicated five times. Observed variables included incubation period, disease incidence, disease intensity, area under disease progress curve (AUDPC), infection rate, plant height, number of leaves, time of first flower, time of first fruit, number of fruits, fruit weight per plant, harvest weight per plot, and qualitative phenolic compound content. The results showed that the combined application of Bio P60 and Bio T10 was the most effective, delaying the incubation period, suppressing disease intensity, and reducing AUDPC by 13.71%, 69.34%, and 47.06%, respectively, compared to the control. The combination treatment also enhanced plant growth and yield, increasing plant height, number of fruits, fruit weight per plant, and harvest weight per plot by 27.38%, 62.65%, 90.85%, and 82.99%, respectively. Furthermore, the application of Bio P60, Bio T10, and their combination increased phenolic compound content qualitatively in chili pepper plants.

Article Details

How to Cite
(1)
Mugiastuti, E. .; Hidayat, F. . .; Sastyawan, M. W. R. . .; Leana, N. W. A. .; Soesanto, L. . . Application of Biocontrol Products Bio P60 and Bio T10 As Single or in Combination in Suppressing Chili Fruit Anthracnose in the Field. J Trop Plant Pests Dis 2025, 25, 230-240.


Section
Articles

References

Adnan M, Islam W, Shabbir A, Khan KA, Ghramh HA, Huang Z, Chen HYH, & Lu GD. 2019. Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microb Pathog 129: 7–18. https://doi.org/10.1016/j.micpath.2019.01.042

Alexander A, Lo RKS, & Chong KP. 2021. The effectiveness of selected biological control agents in controlling Ganoderma boninense. J. Sustain. Sci. Manag. 16(6): 128–137. http://doi.org/10.46754/jssm.2021.08.011

Ardebili ZO, Ardebili NO, & Hamdi SMM. 2011. Physiological effects of Pseudomonas fluoresecens CHAO on tomato (Lycopersicon esculentum Mill.) plants and its possible impact on Fusarium oxysporum f.sp lycopersici. AJCS. 5(12): 1631–1638.

Azubuike CC, Chikere CB, & Okpokwasili GC. 2016. Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 32: 180. https://doi:10.1007/s11274-016-2137-x

Babenko LM, Smirnov OE, Romanenko KO, Trunova OK, & Kosak?vsk? IV. 2019. Phenolic compounds in plants: Biogenesis and functions. Ukr. Biochem. J. 91(3): 5–18. https://doi.org/10.15407/ubj91.03.005

Bele AA, Jadhav VM, & Kadam VJ. 2010. Potential of tannnins: A review. Asian J. Plant Sci. 9(4): 209–214. https://doi.org/10.3923/ajps.2010.209.214

Ciofini A, Negrini F, Baroncelli R, & Baraldi E. 2022. Management of post-harvest anthracnose: Current approaches and future perspectives. Plants. 11(14): 1856. https://doi.org/10.3390/plants11141856

Contreras-Cornejo HA, Macías-Rodríguez L, Beltrán-Peña E, Herrera-Estrella A, & López-Bucio J. 2011. Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signal. Behav. 6(10): 1554–1563. https://doi.org/10.4161/psb.6.10.17443

Deresa EM & Diriba TF. 2023. Phytochemicals as alternative fungicides for controlling plant diseases: A comprehensive review of their efficacy, commercial representatives, advantages, challenges for adoption, and possible solutions. Heliyon. 9(3): e13810. https://doi.org/10.1016/j.heliyon.2023.e13810

Dorjey S, Dolkar D, & Sharma R. 2017. Plant growth promoting rhizobacteria Pseudomonas: A review. Int. J. Curr. Microbiol. App. Sci. 6(7): 1335–1344. https://doi.org/10.20546/ijcmas.2017.607.160

Erb M & Kliebenstein DJ. 2020. Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiol. 184(1): 39–52. https://doi.org/10.1104/pp.20.00433

Gasperini D & Howe GA. 2024. Phytohormones in a universe of regulatory metabolites: Lessons from jasmonate. Plant Physiol. 195(1): 135–154. https://doi.org/10.1093/plphys/kiae045

Guzmán-Guzmán P, Kumar A, de los Santos-Villalobos S, Parra-Cota FI, Orozco-Mosqueda MC, Fadiji AE, Hyder S, Babalola OO, & Santoyo G. 2023. Trichoderma species: Our best fungal allies in the biocontrol of plant diseases—A review. Plants. 12(3): 432. https://doi.org/10.3390/plants12030432

Gusmarini M, Dirmawati SR, Nurdin M, & Akin HM. 2014. Pengaruh beberapa jenis ekstrak tumbuhan terhadap penyakit antraknosa pada tanaman cabai besar (Capsicum annuum L.) di lapangan [Effect of several types of plant extracts on anthracnose disease in large chili plants (Capsicum annuum L.) in the field]. J. Agrotek Trop. 2(2): 197–201. https://doi.org/10.23960/jat.v2i2.2084

Hayat R, Ali S, Amara U, Khalid R, & Ahmed I. 2010. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann. Microbiol. 60: 579–598. https://doi.org/10.1007/s13213-010-0117-1

He DC, He MH, Amalin DM, Liu W, Alvindia DG, & Zhan J. 2021. Biologcal control of plant diseases: An evolutionary and eco-economic consideration. Pathogens. 10(10): 1311. https://doi.10.3390/pathogens10101311

Hojnik M, Modic M, Ni Y, Filipi? G, Cvelbar U, & Walsh JL. 2019. Effective fungal spore inactivation with an environmentally friendly approach based on atmospheric pressure air plasma. Environ. Sci. Technol. 53(4): 1893–1904. https://doi.10.1021/acs.est.8b05386

Ilondu EM. 2011. Evaluation of some aqueous plant extracts used in the control of pawpaw fruit (Carica papaya L.) rot fungi. J. Appl. Biosci. 37: 2419–2424.

Kanchana D, Jayanthi M, Usharani G, Saranraj P, & Sujitha D. 2014. Interaction effect of combined inoculation of PGPR on growth and yield parameters of chili var K1 (Capsicum annuum L.). Int. J. Microbiol. Res. 5(3): 144–151.

Kulbat K. 2016. The role of phenolic compounds in plant resistance. Biotechnol. Food Sci. 80(2): 97–108.

Kumar A, Shrivastava D, Dixit M, Meena SK, Suman, & Prasad A. 2022. Trichoderma: A plant growth promoting fungi. Gorteria Journal. 34(6): 60–76.

Langner T & Göhre V. 2016. Fungal chitinases: Function, regulation, and potential roles in plant/pathogen interactions. Curr. Genet. 62: 243–254. https://doi.org/10.1007/s00294-015-0530-x

Lee YS & Kim KY. 2015. Statistical optimization of medium components for chitinase production by Pseudomonas fluorescens strain HN1205: Role of chitinase on egg hatching inhibition of root-knot nematode. Biotechnol. Biotechnol. Equip. 29(3): 470–478. https://doi.org/10.1080/13102818.2015.1010702

Li G, Song C, Manzoor MA, Li D, Cao Y, & Cai Y. 2023. Functional and kinetics of two efficient phenylalanine ammonia lyase from Pyrus bretschneideri. BMC Plant Biol. 23: 612. https://doi.org/10.1186/s12870-023-04586-0

Mohiddin FA, Padder SA, Bhat AH, Ahanger MA, Shikari AB, Wani SH, Bhat FA, Nabi SU, Hamid A, Bhat NA, Sofi NR, Waza SA, Hamid B, Parveen S, Hussain A, Bhat AN, Ali OM, Dar MS, & Latef AAHA. 2021. Phylogeny and optimization of Trichoderma harzianum for chitinase production: Evaluation of their antifungal behaviour against the prominent soil borne phyto-pathogens of temperate India. Microorganisms. 9(9): 1962. https://doi.org/10.3390/microorganisms9091962

Niu B, Wang W, Yuan Z, Sederoff RR, Sederoff H, Chiang VL, & Borriss R. 2020. Microbial interactions within multiple-strain biological control agents impact soil-borne plant disease. Front Microbiol. 11: 1–16. https://doi.org/10.3389/fmicb.2020.585404

Noel ZA, Longley R, Benucci GMN, Trail F, Chilvers MI, & Bonito G. 2022. Non-target impacts of fungicide disturbance on phyllosphere yeasts in conventional and no-till management. ISME Commun. 2(1): 19. https://doi.org/10.1038/s43705-022-00103-w

Oo MM & Oh SK. 2016. Chili anthracnose (Colletotrichum spp.) disease and its management approach. Korean J. Agric. Sci. 43(2): 153–162. https://doi.org/10.7744/kjoas.20160018

Oskiera M, Szczech M, & Bartoszewski G. 2015. Molecular identification of Trichoderma strains collected to develop plant growth-promoting and biocontrol agents. J. Hortic. Res. 23(1): 75–86. https://doi.org/10.2478/johr-2015-0010

Perry EK, Meirelles LA, & Newman DK. 2022. From the soil to the clinic: The impact of microbial secondary metabolites on antibiotic tolerance and resistance. Nat. Rev. Microbiol. 20: 129–142. https://doi.org/10.1038/s41579-021-00620-w

Prakash N, Vishunavat K, Khan GT, & Prasad P. 2021. SA, ABA and Pseudomonas fluorescens elicit defense responses in tomato against Alternaria blight. J. Plant Biochem. Biotechnol. 30: 13–25. https://doi.org/10.1007/s13562-020-00564-x

Rahayuniati RF & Mugiastuti E. 2012. Keefektifan Bacillus sp. dan Pseudomonas fluorescens dalam mengendalikan Fusarium oxysporum f.sp. lycopersici dan Meloidogyne sp. penyebb penyakit layu pada tomat secara in vitro] [Effectivity of Bacillus sp. and Pseudomonas fluorescens to control Fusarium oxysporum f.sp. lycopersici and Meloidogyne sp. causing tomato wilt in vitro. Jurnal Pembangunan Pedesaan. 12(1): 65–70.

Ribeiro BD, Barreto DW, & Coelho MAZ. 2013. Application of foam column as green technology for concentration of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro). Braz. J. Chem. Eng. 30(4): 701–709. https://doi.org/10.1590/S0104-66322013000400002

Rodrigues GB, Rezende AM, Sobrinho GGR, & de Novaes QS. 2019. Etiology, occurrence and epidemiology of a begomovirus disease in passionflower in the South West of Bahia. Sci. Agric. 76(4): 337–343. https://doi.org/10.1590/1678-992X-2017-0272

Rufai Y, Isah Y, & Isyaka MS. 2016. Comparative phyto-constituents analysis from the root bark and root core extractives of Cassia ferruginea (Schrad D. C) plant. Sch. J. Agric. Vet. Sci. 3(4): 275–283.

Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, & Hunt MD. 1996. Systemic acquired resistance. Plant Cell. 8(10): 1809–1819. https://doi.org/10.1105%2Ftpc.8.10.1809

Saikia S & Chetia P. 2024. Antibiotics: From mechanism of action to resistance and beyond. Indian J. Microbiol. 64: 821–845 https://doi.org/10.1007/s12088-024-01285-8

Sathua SK, Reddy MSS, Sulagitti A, & Singh RN. 2017. Bio-efficacy of various insecticides and botanicals against chili thrips (S. dorsalis Hood) and their comparative cost: Benefit analysis in chili crop. J. Entomol. Zool. Stud. 5(2): 130–134.

Saxena A, Raghuwanshi R, Gupta VK, & Singh HB. 2016. Chili anthracnose: The epidemiology and management. Front. Microbiol. 7: 1527. https://doi.org/10.3389/fmicb.2016.01527

Shigeto J & Tsutsumi Y. 2016. The role of plant peroxidases in cell wall formation and modification. Mokuzai Gakkaishi. 62(4): 91–100. https://doi.org/10.2488/jwrs.62.91

Simko I & Piepho HP. 2012. The area under the disease progress stairs: Calculation, advantage, and application. Phytopathology. 102(4): 381–389. https://doi.org/10.1094/PHYTO-07-11-0216

Soesanto L, Mugiastuti E, & Rahayuniati RF. 2010. Kajian mekanisme antagonis Pseudomonas fluorescens P60 terhadap Fusarium oxysporum f.sp. lycopersici pada tanaman tomat in vivo [Antagonistic mechanisms study of Pseudomonas fluorescens P60 on Fusarium oxysporum f.sp. lycopersici of tomato in vivo]. J. Trop Plant Pests Dis. 10(2): 108–115. https://doi.org/10.23960/j.hptt.210108-115

Soesanto L, Mugiastuti E, & Rahayuniati RF. 2013. Aplikasi formula cair Pseudomonas fluorescens P60 untuk menekan penyakit virus cabai merah [Liquid formula application of Pseudomonas fluorescens P60 for suppressing viral diseases in chili peppers]. Jurnal Fitopatologi Indonesia. 9(6): 179–185. https://doi.org/10.14692/jfi.9.6.179

Soesanto L, Hiban A, & Suharti WS. 2019a. Application of Bio P60 and Bio T10 alone or in combination against stem rot of pakcoy. J. Trop. Hortic. 2(2): 38–44. https://doi.org/10.33089/jthort.v2i2.20

Soesanto L, Kustam, & Mugiastuti E. 2019b. Application of Bio P60 and Bio T10 in combination against phytophthora wilt of papaya. Biosaintifika. 11(3): 339–344.

Soesanto L, Mugiastuti E, Suyanto A, & Rahayuniati RF. 2020. Application of raw secondary metabolites from two isolates of Trichoderma harzianum against anthracnose on red chili pepper in the field. J. Trop. Plant Pests Dis. 20(1): 19–27. https://doi.org/10.23960/j.hptt.12019-27

Statistics Indonesia. 2021. Vegetbales. https://www.bps.go.id/indicator/55/61/1/produksi-tanaman-sayuran.htm. Accessed 25 January 2025.

Suprapta DN. 2022. Biocontrol of anthracnose disease on chili pepper using a formulation containing Paenibacillus polymyxa C1. Front. Sustain. Food Syst. 5: 782425. https://doi.org/10.3389/fsufs.2021.782425

Susi H & Laine AL. 2017. Host resistance and pathogen aggressiveness are key determinants of coinfection in the wild. Evolution. 71(8): 2110–2119. https://doi.org/10.1111/evo.13290

Temanggung Regency Government. 2021. Statistical Data 2021. https://e-statistik.temanggungkab.go.id/frontend/datastatistik/2021. Accessed 12 December 2022.

Ting ASY & Chai JY. 2015. Chitinase and ?-1,3-glucanase activities of Trichoderma harzianum in response towards pathogenic and non-pathogenic isolates: Early indications of compatibility in consortium. Biocatal. Agric. Biotechnol. 4(1): 109–113. https://doi.org/10.1016/j.bcab.2014.10.003

Tucci M, Ruocco M, De Masi L, De Palma M, & Lorito M. 2011. The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol. Plant Pathol. 12(4): 341–354. https://doi:10.1111/j.1364-3703.2010.00674.x

Vidal NP, Adigun OA, Pham TH, Mumtaz A, Manful C, Callahan G, Stewart P, Keough D, & Thomas RH. 2018. The effects of cold saponification on the unsaponified fatty acid composition and sensory perception of commercial natural herbal soaps. Molecules. 23(9): 2356. https://doi.org/10.3390/molecules23092356

Vinale F, Sivasithamparam K, Ghisalberti EL, Ruocco M, Woo S, & Lorito M. 2012. Trichoderma secondary metabolites that affect plant metabolism. Nat. Prod. Commun. 7(11): 1545–1550. https://doi.org/10.1177/1934578X1200701133

Wallis CM & Galarneau ERA. 2020. Phenolic compound induction in plant-microbe and plant-insect interactions: A meta-analysis. Front. Plant Sci. 11: 580753. https://doi.org/10.3389/fpls.2020.580753

Weller DM, Mavrodi DV, van Pelt JA, Pieterse CMJ, van Loon LC, & Bakker PAHM. 2012. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology. 102(4): 403–412. https://doi.org/10.1094/PHYTO-08-11-0222

Zhang J & Sun X. 2021. Recent advances in polyphenol oxidase-mediated plant stress responses. Phytochemistry. 181: 112588. https://doi.org/10.1016/j.phytochem.2020.112588