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ABSTRACT

This study aimed to  evaluate the effectiveness of single or combined applications of Bio P60 and Bio T10 products in 
suppressing anthracnose disease in chili pepper under field conditions. The research was conducted at an altitude of 1200 m 
above sea level using a randomized block design with five treatments: control, chemical fungicide, Bio P60, Bio T10, and 
a combination of Bio P60 and Bio T10, each replicated five times. Observed variables included incubation period, disease 
incidence, disease intensity, area under disease progress curve (AUDPC), infection rate, plant height, number of leaves, time 
of first flower, time of first fruit, number of fruits, fruit weight per plant, harvest weight per plot, and qualitative phenolic 
compound content. The results showed that the combined application of Bio P60 and Bio T10 was the most effective, delaying 
the incubation period, suppressing disease intensity, and reducing AUDPC by 13.71%, 69.34%, and 47.06%, respectively, 
compared to the control. The combination treatment also enhanced plant growth and yield, increasing plant height, number of 
fruits, fruit weight per plant, and harvest weight per plot by 27.38%, 62.65%, 90.85%, and 82.99%, respectively. Furthermore, 
the application of Bio P60, Bio T10, and their combination increased phenolic compound content qualitatively in chili pepper 
plants.
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INTRODUCTION 

Chili is a highly important commodity in the 
daily lives of Indonesian people. The demand for chili in 
Indonesia continues to increase along with population 
growth. In 2021, chili pepper production in Indonesia 
reached 1.39 million tons (Statistics Indonesia, 2021). 
However, this figure represents a decrease compared 
to the 2020 production of 1.5 million tons, marking 
a decline of 8.09%. However, this figure represents 
a decrease compared to the 2020 production of 1.5 
million tons, marking a decline of 8.09%. 

One of the major pathogens causing losses in 
chili production is the fungus Colletotrichum capsici, 
the causal agent of anthracnose. Anthracnose can lead 
to shoot dieback in mature plants and fruit infections, 
significantly reducing chili yields (Saxena et al., 2016). 

Yield losses due to anthracnose can reach up to 50%, 
and in the absence of proper control measures, losses 
may rise to 100%, particularly during the rainy season 
(Ciofini et al., 2022). 

Currently, anthracnose control primarily relies 
on the intensive use of synthetic fungicides. However, 
excessive application of these chemicals can have long-
term negative effects on soil health, the environment, 
and the wellbeing of farmers and consumers (Noel et 
al., 2022; Deresa & Diriba, 2023). Alternative control 
methods, such as the use of botanical pesticides, 
have been explored (Ilondu, 2011). However, these 
approaches have several limitations, including the 
need for frequent applications due to volatility, limited 
availability in some areas, and the inability of non-
polar compounds to penetrate plant tissues (Soesanto 
et al., 2019b). 

Environmentally friendly alternatives include 
the use of antagonistic microbes. Several studies have 
been investigated the use of antagonistic microbes for 
controlling chili anthracnose (Oo & Oh, 2016; Saxena 
et al., 2016; Suprapta, 2022). However, the application 
of spore-based biological agents in the field faces 
challenges, such as abiotic stress and inconsistent spore 
production (Azubuike et al., 2016; Hojnik et al., 2019). 

Therefore, new strategies are needed, including 
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the use of secondary metabolites produced by biological 
control agents (Soesanto et al., 2020).  These metabolites 
represent a promising alternative to spore-based agents. 
The antagonistic bacterium Pseudomonas fluorescens 
P60 and the fungus Trichoderma harzianum T10 have 
each been formulated into biological products known 
as Bio P60 and Bio T10, respectively (Soesanto et al., 
2019a). However, the application of Bio P60 and Bio 
T10,  either individually or in combination, to control 
chili anthracnose in the field has not yet been studied. 
The objective of this study was to evaluate the potential 
of single or combined applications of Bio P60 and Bio 
T10 in reducing anthracnose incidence, enhancing 
plant height, and increasing fruit yield in chili pepper.

MATERIALS AND METHODS

Research Site. This research was conducted in 
an anthracnose-endemic area at Bansari Village, 
Bansari Subdistrict, Temanggung Regency, Central 
Java, at an altitude of 1200 m above sea level, with 
a tropical climate, temperatures ranging around 20–
30 ºC, and annual rainfall approximately 2000 mm/
year (Temanggung Regency Government, 2021). 
Laboratory research was carried out at the Plant 
Protection Laboratory, Faculty of Agriculture, Jenderal 
Soedirman University. This research was conducted 
over seven months, from December 2022 to July 2023.

Preparation of Bio P60 and Bio T10 Formulations. 
Preparation of the Bio P60 formulation began with 
the rejuvenation of P. fluorescens P60 isolate was 
inoculated into 1 L of King’s B broth and shaken at 
135 rpm at room temperature for 2–3 days (Soesanto et 
al., 2013). Secondary metabolites of P. fluorescens P60 
were produced using a medium consisting of 200 g of 
catfish meat, 80 g of shrimp paste, and 20 L of water. 
The medium was boiled, filtered, placed in sterile jerry 
cans, allowed to cool, and then inoculated with 40 mL 
of P. fluorescens P60 liquid culture. It was then shaken 
at 135 rpm at room temperature for 3 days, and the cell 
density was determined to be 108 cells mL-1 (Soesanto 
et al., 2010). 

Preparation of Bio T10 began by growing T. 
harzianum T10 on sterile broken corn and incubating 
it for 7 days at room temperature (25–27 ºC) (Soesanto 
et al., 2019a). The medium for producing secondary 
metabolites of T. harzianum T10 consisted of 6 L of 
coconut water, 250 g of rice flour, and 60 g of sugar. 
This mixture was boiled, filtered, and placed into 
sterile jerry cans, and allowed to cool. T. harzianum 
T10 from 3–4 plastic bags (150–200 g) was dissolved, 

filtered, and added to the propagation medium. The 
mixture was shaked at 135 rpm for 7 days at room 
temperature, and the conidia density was determined 
to be 108 conidia mL-1. 

Preparation of Planting Area. The planting area, with 
andosol soil covering 200 m2, was amended 10–20 g 
of chicken manure and 5–10 g of chemical fertilizer 
(NPK 15: 15: 15) per plant. Beds were formed with 
a width of 70 cm and length adjusted to the land size, 
then covered with plastic mulch.

Cultivation. Chili seedlings aged approximately 30 
days after sowing were transplanted using a spacing of 
40 cm × 40 cm. One seedling was planted per planting 
hole.

Experimental Design. A randomized block design 
(RBD) was used with five treatments and five replicates, 
resulting in 25 experimental units. The treatments 
included: (i) Control (sprayed with 50 mL of water per 
plant), (ii) Chemical fungicide (a.i. mancozeb 80%) at 
the recommended dose, (iii) Bio P60, (iv) Bio T10, (v) 
Combination of Bio P60 and Bio T10 (1:1, v/v). 

Bio P60, Bio T10, or their combination were 
applied in two stages: 
First stage:  5 mL L-1 solution at 50 mL per plant on 
days 52, 56, 60, 64, and 68 after planting (DAP), 
Second stage: 10 mL L-1 solution at 100 mL per plant 
on days 72, 76, 80, 84, 88, 92, and 96 DAP.
Inoculation and infection of anthracnose pathogens 
occurred naturally in the field. 

Maintenance. Maintenance of chili plants included 
manual watering as needed, fertilization according 
to dosage and growth stage, manual pest and weed 
control, and replanting of dead seedlings.

Observation. The observed parameters included 
incubation period, disease incidence, disease intensity, 
AUDPC (Area Under Disease Progress Curve), 
infection rate, plant height, and number of leaves. Yield 
components included time to first flowering, number 
of flowers, time to first fruiting, number of fruits per 
plant, fruit weight per plant, fruit weight per plot, and 
qualitative analysis of phenolic compounds. 
Incubation period. Incubation period was recorded  
from the onset of the first anthracnose symptoms on 
chili fruits. 
Disease incidence. Disease incidence was calculated 
using the formula (Rodrigues et al., 2019): 
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IS = Disease Incidence; 
A  = Number of affected plants; 
B  = Total number of observed plants.

Disease intensity. Disease intensity was calculated 
using the formula (Gusmarini et al., 2014):
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/

DI = Disease Intensity (%);
n   = Number of fruits in each category; 
v  = Score of each disease category. 
N  = Total number of observed fruits; 
V  = Highest score in the scale. 

Scale based on fruit anthracnose pathogen attack 
interval, according to Gusmarini et al. (2014): 0 = No 
symptoms; 1 = Fruit with 1–20% anthracnose symptoms; 
2 = Fruit with 21–40% anthracnose symptoms; 3 = 
Fruit with 41–60% anthracnose symptoms; 4 = Fruit 
with 61–80% anthracnose symptoms; 5 = Fruit with 
81–100% anthracnose symptoms. 

Control effectiveness. Control effectiveness was 
calculated using the formula:
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NE = Control effectiveness; 
I1  = Disease intensity in control; 
I2  = Disease intensity in treatment. 

According to Rahayuniati & Mugiastuti (2012), 
control effectiveness is categorized as follows: CE > 
69%: Very good; CE = 50–69%: Good, CE = 30–49%: 
Fair, CE < 30%: Poor. 

AUDPC. AUDPC was calculated using the formula 
(Simko & Piepho, 2012): 
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AUDPC = Disease progression curve (%-days); 
Yi, Yi+1      = Observation data; 
Ti+1 = Observation time; 
Ti  = 1st observation time.

Infection rate. Infection rate (r) was calculated as:
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r  = Infection rate;
X0 = Proportion  of  disease  at  the  beginning  of
         observation (t = 0); 
Xt = Proportion of disease at time t; 
t  = Time of observation.

Growth components included plant height and 
number of leaves. Yield components included time 
to first flowering, number of flowers, time to first 
fruiting, number of fruits per plant, fruit weight per 
plant, and fruit weight per plot. In addition, qualitative 
phytochemical analysis was performed for phenolic 
compounds, especially tannins (Bele et al., 2010), 
glycosides (Rufai et al., 2016), and saponins (Ribeiro 
et al., 2013; Vidal et al., 2018).

Data Analysis. Data were analyzed with the F-test 
at a 5% significance level. If significant difference 
were found, further analysis was conducted using 
the Duncan’s Multiple Range Test (DMRT) at α ≤ 
0.05. The results of phytochemical content tests were 
analyzed descriptively.

RESULTS AND DISCUSSION

The Effect of Bio P60, Bio T10, and their 
Combination on Pathosystem Component
Incubation Period. The analysis of the incubation 
period showed that the combined application of Bio P60 
and Bio T10 significantly delayed sympton onset by 
13.71%, or about 13 days longer than the control (Table 
1). The single application of the chemical fungicide, 
Bio P60, and Bio T10 delayed the incubation period by 
7.85%, 11.15%, and 11.73%, respectively, compared to 
the control. The shorter incubation period in the control 
group was likely due to the absence of any inhibitory 
activity against the pathogen. Anthracnose infection 
occurred naturally, with symptoms first appearing on 
chili fruits in the control group (Figure 1). 

The faster incubation period observed in the 
control is thought to result from factors such as 
the aggressiveness of the pathogen and the lack of 
inhibition (Susi & Laine, 2017). Soesanto et al. (2010) 
also found that the P. fluorescens P60 formulation 
was able to delay the incubation period of bacterial 
wilt in tomatoes. This study confirms that single and 
combined applications of Bio P60 and Bio T10 can 
delay C. capsici infection. 
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Bio P60 and Bio T10 may enter plant 
tissues via nutrient and water transport systems, 
stimulating resistance due to their polar (water-based) 
characteristics (Soesanto et al., 2010; Soesanto et al., 
2019a). The secondary metabolites of P. fluorescens 
P60 include the antibiotic 2,4-diacetylphloroglucinol, 
which can enhance resistance by increasing phenolic 
compounds in plants. Meanwhile, T. harzianum T10 
produces chitinase, β-1,3-glucanase, and cellulase 
enzymes that degrade pathogen cell walls (Ting & 
Chai, 2015). Soesanto et al. (2020) demonstrated 
that   secondary metabolites from T. harzianum T10 
and T213 isolates can delay disease onset. This study 
further supports that combining secondary metabolites 
from multiple antagonists enhances efficacy in field 
conditions (Alexander et al., 2021).

Disease Incidence. The application of single (Bio P60 
or Bio T10), combined secondary metabolites, as well 
as the fungicide Mancozeb (80%), significantly reduced 
disease incidence compared to the control (Table 1). 
The combined treatment reduced disease incidence by 
18%. This reduction may result from mechanisms such 
as cell wall lysis and intracellular parasitism mediated 
by microbial secondary metabolites. 

P. fluorescens produces salicylic acid and 
peroxidase enzymes (Prakash et al., 2021), which 
activate plant resistance genes through induced 
systemic resistance (ISR) (Ryals et al., 1996). 
Peroxidases strengthen plant cell walls by pcatalyzing 

the polymerization of lignin precursors (Shigeto 
& Tsutsumi, 2016). Additionally, higher levels of 
phenolic compounds were detected in treated plants 
(Table 4), indicating increased biochemical resistance. 

The superior performance of the combined 
application is likely due to the synergistic effects of 
multiple antimicrobial compounds. Saikia & Chetia 
(2024) suggested that combinations of antibiotics often 
outperform single agents. Compounds present in the 
secondary metabolites of antagonistic microbes have 
been shown to suppress plant pathogens effectively 
(He et al., 2021). Moreover, these compounds may also 
promote plant growth. P. fluorescens produces auxins 
such as IAA (Dorjey et al., 2017), while T. harzianum 
is recognized as a plant growth-promoting fungus 
(PGPF) due to its ability to produce phytohormones 
(Oskiera et al., 2015; Kumar et al., 2022).

Disease Intensity and Control Effectiveness. 
As shown in Table 1, the combined application 
significantly reduced disease intensity by 67.67%, 
compared to 54.88% and 53.38% for Bio P60 and Bio 
T10, respectively. This indicates that the combination 
is more effective than either treatment alone or the 
synthetic fungicide. The cumulative effects of the 
combined treatment likely enhanced efficacy through 
synergistic interactions (Niu et al., 2020). Multiple-
strain biological control agents (MSBCAs), consisting 
of two strains—such as fungi and bacteria— where 
one or both have biocontrol activity, have proven to 

Treatments Incubation 
period (DAP)

Disease 
incidence (%)

Disease 
intensity (%)

AUDPC 
(%-days)

Infection rate 
(%/day)

Control 
effectiveness (%)

Control     94.04 a   100 b 66.50 c    362.86 d 0.057 c -
Mancozeb 80%   101.42 b    96 a 35.50 b    254.52 c 0.013 a 46.61
Bio P60   104.52 bc    96 a 30.00 b    224.60 b 0.024 b 54.88
Bio T10   105.08 bc    94 a 31.00 b    234.39 bc 0.006 a 53.38
Combination   106.94 c    82 a 21.50 a    192.08 a 0.004 a 67.67

Table 1. Pathosystem component of chili pepper anthracnose 

The disease intensity and incidence data were transformed to Arsin V(x+0.5). Numbers in the same column 
followed by the same letter are not significantly different according to Duncan's Multiple Range Test (DMRT) at 
the 95% confidence level, DAP = days after planting.

Figure 1. Anthracnose symptoms on chili pepper fruit. 
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be more efficient. For example, a consortium of T. 
asperellum and Bacillus amyloliquefaciens was more  
effective against Botrytis cinerea (grey mold disease) 
than either strain alone. 

Bio P60, which contains secondary metabolites 
of P. fluorescens P60, can protect plants against 
pathogens  through multiple mechanisms, such as 
hydrolytic enzymes, induced systemic resistance 
(ISR), and antibiotics like 2,4-diacetylphloroglucinol 
(DAPG) (Vinale et al., 2012). Vinale et al. (2012) 
also reported that the diverse range of secondary 
metabolites produced by Trichoderma species 
contributes significantly to their beneficial biological 
activities. This is supported by the research from 
Weller et al. (2012), which highlighted the importance 
of DAPG in ISR; mutants unable to produce DAPG 
could not trigger resistance, indicating that antibiotics 
are the key ISR-activating components.

Bio T10, containing secondary metabolites 
of T. harzianum T10, operates through an antibiosis 
mechanism marked by the production of bioactive 
compounds such as peptaibols, pyrones, viridins, 
koningins, gliotoxins, gliovirins, and viridiol (Guzmán-
Guzmán et al., 2023). Trichoderma sp. can induce 
long-term upregulation of salicylic acid-responsive 
genes more quickly than pathogen infections, such 
as those caused by B. cinerea. Pretreatment with 
Trichoderma modulates salicylic acid-dependent gene 
expression and, after infection, activates defense genes 
through the jasmonic acid signaling pathway, thereby 
enhancing ISR over time (Tucci et al., 2011).

Based on the calculation, the highest control 
effectiveness was observed in the combined application 
(67.67%). Meanwhile, the single application of Bio P60 
and Bio T10 chieved effectiveness values of 54.88% 
and 53.38%, respectively. The synergistic effect of 
combining microbial secondary metabolites enhances 
their efficacy compared to individual applications (Niu 
et al., 2020). Based on these values, the use of Bio P60, 
Bio T10, or their combination in managing chili pepper 
anthracnose in the field falls into the “good” category, 

as the effectiveness ranges from 50–69%. According 
to Sathua et al. (2017), efficacy values ≥ 50% are 
considered “good.”

Area Under Disease Progress (AUDPC). The 
AUDPC results (Table 1) showed that the combined 
application reduced disease progression by 47.06% 
compared to the control. The fungicide, Bio P60, and  
Bio T10 reduced AUDPC values by 29.85%, 38.12%, 
and 34.85%, respectively. The superior performance of 
the combined application indicates its enhanced ability 
to inhibit C. capsici development. 

This inhibition is likely due to the chitinase 
enzymes produced by both antagonists, which degrade 
fungal cell walls (Lee & Kim, 2015; Mohiddin et 
al., 2021). According to Langner & Göhre (2016), 
chitinase enzyme can inhibit and degrade chitin in 
the fungal cell walls, leading to fungal cell lysis. 
Additionally, the accumulation of phenolic compounds 
may activate phenylalanine ammonia-lyase (PAL), 
further enhancing resistance (Li et al., 2023). AUDPC 
is positively correlated with disease intensity, as stated 
by Simko & Piepho (2012). 

Infection Rate. Bio T10 and the combined treatment 
significantly suppressed the infection rate by 89.47% 
and 92.98%, respectively (Table 1), while Bio P60 
reduced it by 57.89%. This suppression is likely due 
to increased phenolic compound levels, which act as 
natural toxins without affecting plant growth (Soesanto 
et al., 2010). Phenolic presence was confirmed 
qualitatively (Table 4).

The Effect of Bio P60, Bio T10, and their 
Combination on Growth Components
Plant Height. Table 2 showed that the combined 
treatment increased plant height by 27.38% compared 
to the control, while Bio T10 alone increased height by 
14.26%. The increase in crop height  from the combined 
application of Bio P60 and Bio T10 is likely due to the 
synergistic action of their secondary metabolites, which 

Treatments Plant height (cm) Number of leaves
Control                       61.34 a 137.47 a
Mancozeb 80%                       62.58 ab 141.31 a
Bio P60                       63.11 ab 145.02 a
Bio T10                       70.08 bc 151.67 a
Combination                       78.13 c 164.36 a

Table  2. Chili pepper growth component

Numbers in the same column followed by the same letter are not significantly different according to Duncan's 
Multiple Range Test (DMRT) at the 95% confidence level.
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work together more effectively than when applied 
individually. P. fluorescens can act as a plant growth-
promoting rhizobacteria (PGPR), producing plant 
hormones such as indole acetic acid (IAA) (Ardebili 
et al., 2011). In addition, Trichoderma species are 
known to produce IAA and indole compounds such as 
indole-3-ethanol, indole-3-acetaldehyde, and indole-3-
carboxaldehyde as part of their metabolism processes 
(Contreras-Cornejo et al., 2011). 

Number of Leaves. Although no significant differences 
were observed among treatments (Table 2), combined 
application tended to result in a higher number of 
leaves. The control group had the fewest leaves, 
likely due to nutrient limitations or lack of hormonal 
stimulation. According to Perry et al. (2022), low doses 
of microbial metabolites may reduce hormone activity, 
thereby affecting leaf development.  Hayat et al. (2010) 
also emphasized that rhizosphere bacteria can enhance 
plant growth through hormonal signaling.

The Effect of Bio P60, Bio T10, and their 
Combination on Yield Components
Time to First Flowering. The results of data analysis 
showed no significant difference in flowering time 
between the control and the treated groups, although 
there was a tendency for the combined application to 
induce earlier flowering (Table 3). This is likely due 
to the low concentration of secondary metabolites, 
resulting in insufficient growth hormone content 
to optimally promote flowering. The concentration 
of secondary metabolites in Bio P60 and Bio T10 
should ideally be more than 5 mL L⁻¹ each. As is 
well known, secondary metabolites contain bioactive 
compounds, including plant hormones. Additionally, 
the physiological effect of phytohormones on 
flowering can vary across different parts of the plant 
canopy, influencing the timing of flowering (Gasperini 
& Howe, 2024). According to Vinale et al. (2012), 
Trichoderma secondary metabolites at high doses may 

actually inhibit plant growth.

First Appearance of Fruit. The application of single 
(Bio P60 or Bio T10) and combined (Bio P60 and Bio 
T10) secondary metabolites, and chemical fungicide 
did not have a significant effect on the timing of 
the first fruit appearance, although the combined 
application tended to produce fruit earlier (Table 3). 
This is consistent with the flowering time analysis 
results, suggesting that the low content of bioactive 
compounds in these secondary metabolites may not be 
sufficient to accelerate fruit development. In general, 
the application of secondary metabolites can enhance 
plant growth due to the presence of growth regulators. 
These compounds can aid in nutrient uptake, improve 
stress resistance, and promote overall plant health (Erb 
& Kliebenstein, 2020).

Number of Fruits. The results of fruit number 
parameters showed significantly different between the 
combined application of secondary metabolites and 
the control (Table 3). The combined application of 
Bio P60 + Bio T10 was able to increase the number 
of fruits by 67.65% compared to the control, which is 
in line with the pathosystem component data above 
(Table 1). This is because the more diverse content of 
bioactive compounds gave the best effect. According 
to Kanchana et al. (2014), the combination of PGPR 
P. fluorescens and B. subtilis can affect the number of 
fruits on chili pepper. Furthermore, according to Adnan 
et al. (2019), Trichoderma sp. has a high reproductive 
ability, efficiency in nutrient utilization, responsiveness 
to pathogens and the ability to spur plant growth and 
defense.

Fruit Weight Per Plant and Harvest Weight Per Plot. 
The results of data analysis of fruit weight per plant 
and harvest weight per plot showed a highly significant 
difference in the combined application and a significant 
difference in other treatments compared to the control 

Treatments First flowering 
time (DAP)

First developing 
fruit (dap)

Number of fruits 
per crop

Fruit weight 
per crop (g)

Harvest weight per 
plot (8 m2) (g)

Control 59.60 a 69.62 a 34.26 a 29.30 c 240.40 c
Mancozeb 80% 61.24 a 68.40 a 42.28 a 44.38 b 355.00 b
Bio P60 60.30 a 69.92 a 43.28 a 44.71 b 357.70 b
Bo T10 59.60 a 69.62 a 43.08 a 46.65 b 373.18 b
Combination 56.96 a 67.76 a 57.44 b 55.92 a 439.92 a

Table  3. Chili pepper yield component

Numbers in the same column followed by the same letter are not significantly different according to Duncan's 
Multiple Range Test (DMRT) at the 95% confidence level, DAP = days after planting.
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(Table 3). The combined application of Bio P60 + Bio 
T10 increased fruit weight per plant by 90.85% and 
harvest weight per plot by 82.99% compared to the 
control. Meanwhile, the single application of chemical 
fungicide, Bio P60, and Bio T10 significantly increased 
the number of fruits per plant by 51.46%, 52.59% and 
59.21%, respectively, and increased harvest weight per 
plot by 47.67%, 48.79%, and 50.23%, respectively, 
compared to the control. The superior effect of the 
combined treatment is attributed to the synergistic action 
of multiple secondary metabolites, which do not work 
individually but rather in a balanced concentration that 
supports the growth and development of chili plants. 
This aligns with the findings of Hayat et al. (2010) 
and Niu et al. (2020), who reported that combining 
beneficial microbial isolates can enhance the effects 
achieved by a single isolate as PGPR. 

Phenolic Compound Analysis. Bio P60, Bio T10, 
and their combination increased the levels of saponins, 
tannins, and glycosides compared to the control 
(Table 4). Bio P60 and Bio T10, which contain 
secondary metabolites, can function as PGPR that 
benefit plants by not only stimulating the production 
of phytohormones but also enhancing plant resistance 
to pathogens (Hayat et al., 2010). This biochemical 
resistance is characterized by an increase in phenolic 
compound content. The application of single and 
combined secondary metabolites resulted in the highest 
levels of phenolic compounds observed qualitatively. 
The accumulation of phenolic compounds can enhance 
plant resistance (Wallis & Galarneau, 2020). 

Polyphenol oxidase activity, which is induced 
by pathogen attacks, can lead to an increase in 
quinone concentrations—compounds known to be 
cytotoxic (Zhang & Sun, 2021). In relation to plant 
disease resistance, polyphenol oxidase catalyzes the 
oxidation of phenolic compounds into quinones, 
which are more toxic to pathogenic microbes than the 
phenolics themselves. Although phenolic compounds 
are naturally present in plants, their baseline levels 
are often insufficient (Babenko et al., 2019). The 

increase in phenolic content can be triggered by the 
presence of external organisms, such as the application 
of secondary metabolites from antagonistic microbes 
(Wallis & Galarneau, 2020). High phenolic content 
in plants contributes to stronger resistance against 
phytopathogen (Kulbat, 2016; Wallis & Galarneau, 
2020). Chili pepper plants in the control treatment, 
which showed low phenolic content (Table 4), also 
exhibited high disease intensity—consistent with the 
high disease incidence and severity observed in the 
control group (Table 1).

CONCLUSION

The combined application of Bio P60 and Bio 
T10 demonstrated superior effectiveness against 
anthracnose, as evidenced by a delayed incubation 
period, reduced disease intensity, and lower AUDPC 
values—by 13.71%, 69.34%, and 47.06%, respectively 
— compare to the control. It also increased control 
effectiveness to 67.67%. Furthermore, the combined 
treatment enhanced plant growth and yield by 
increasing plant height, number of fruits, fruit weight 
per plant, and harvest weight per plot by 27.38%, 
62.65%, 90.85%, and 82.99%, respectively, compared 
to the control. In addition, the application of Bio 
P60, Bio T10, and their combination qualitatively 
increased phenolic compounds (tannins, saponins, and 
glycosides) in chili pepper plants.
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