Molecular characterization of Rice ragged stunt virus and Rice grassy stunt virus on Rice in Gianyar, Bali, Indonesia
Main Article Content
Abstract
Rice stunt disease is one of the causes of rice harvest failure. It is caused by the infection of Rice ragged stunt virus (RRSV) and Rice grassy stunt virus (RGSV) infection. Information about disease severity and the molecular characteristics of stunt viruses in Indonesia is still limited. Thus, this research aimed to determine the disease severity and the genetic diversity of rice stunt viruses in Gianyar, Bali. The research method consisted of observation of incidence and disease severity in the field and virus detection by reverse transcription-polymerase chain reaction (RT-PCR) using primers specific for RRSV and RGSV. The observation of the disease incidence and severity were performed in seven districts in Gianyar Regency, Bali, namely Blahbatuh, Gianyar, Payangan, Sukawati, Tampaksiring, Tegallalang, and Ubud. Stunt disease was found in all observation sites. High stunt disease incidence (> 44%) was found in three districts: Ubud, Tampaksiring, and Payangan, while the low disease incidence rate of <10% was found in Blahbatuh and Gianyar Districts. The highest stunt disease severity occurred in Tampaksiring District (60.82%), while the lowest severity occurred in Gianyar District (18.84%). The IR-64 and Ciherang cultivars are vulnerable to rice stunt disease infection. The highest homology of RRSV and RRGV nucleotides was found with Vietnam isolates being >98% and >97%, respectively. The phylogenetic analysis showed that Indonesian isolates of RRSV and RGSV were clustered in the same group as Vietnam isolates.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Chen S, Li W, Huang X, Chen B, Zhang T, & Zhou G. 2019. Symptoms and yield loss caused by rice stripe mosaic virus. Virol. J. 16(1): 145. https://doi.org/10.1186/s12985-019-1240-7
Dini AFB, Winasa IW, & Hidayat SH. 2015. Identifikasi virus penyebab penyakit kerdil pada tanaman padi di Sukamandi, Jawa Barat [Identification of viruses causing stunting diseases on rice in Sukamandi, West Java]. Jurnal Fitopatologi Indonesia. 11(6): 205–210. https://doi.org/10.14692/jfi.11.6.205
Doyle JJ & Doyle JL. 1990. Isolation of plant DNA from fresh tissue. Focus. 12: 13–15.
Du PV, Cabunagan RC, & Choi IR. 2005. Rice “yellowing syndrome” in Mekong River Delta. Omonrice. 13: 135–138.
Helina S, Sulandari S, Hartono S, & Trisyono A. 2018. Detection and transmission of rice stunt virus on Ciherang and Situ Bagendit varieties. J. Trop. Plant Pests Dis. 18(2): 169–176. https://doi.org/10.23960/j.hptt.218169-176
Helina S, Sulandari S, Trisyono A, & Hartono S. 2020. Assessments of yield losses due to double infection of Rice ragged stunt virus and Rice grassy stunt virus at different severity in the field, Yogyakarta, Indonesia. Pak. J. Phytopathol. 32(2): 129–136. https://doi.org/10.33866/phytopathol.030.02.0578
Hibino H, Roechan M, & Sudarisman S. 1977. A virus disease of rice (kerdil hampa) transmitted by brown planthopper, Nilaparvata lugens in Indonesia. Control Center Research Institute of Agriculture, Bogor.
Huang HJ, Bao YY, Lao SH, Huang XH, Ye YZ, Wu JX, Xu HJ, Zhou XP, & Zhang CX. 2015. Rice ragged stunt virus-induced apoptosis affects virus transmission from its insect vector, the brown planthopper to the rice plant. Sci. Rep. 5: 11413. https://doi.org/10.1038/srep11413
Jing H, Chen-Yi W, Bin-Yuan L, Xin-Lun D, Shuai Z, & Jian-Guo W. 2022. Establishment of a rapid one-step multiplex RT-PCR detection method for six rice viruses. J. Agric. Biotechnol. 30(4): 619–627. https://doi.org/10.3969/j.issn.1674-7968.2022.04.001
Kannan M, Saad MM, Talip N, Baharum SN, & Bunawan H. 2019. Complete genome sequence of Rice tungro bacilliform virus infecting Asian rice (Oryza sativa) in Malaysia. Microbiol. Resour. Announc. 8(20): e00262–19. https://doi.org/10.1128/MRA.00262-19
King AMQ, Adam MJ, Carstens EB, & Lefkowitz EJ. 2012. Virus Taxonomy Classification and Nomenclature of Viruses. Elsevier Academic Pr. Birmingham.
Lacombe S, Bangratz M, Ta HA, Nguyen TD, Gantet P, & Brugidou C. 2021. Optimized RNA-silencing strategies for Rice ragged stunt virus resistance in rice. Plants. 10(10): 2008. https://doi.org/10.3390/plants10102008
Lianhui LLWZX & Qiying L. 2003. Cloning, sequence analysis and procariotic expression of the vRNA3 NS3 gene in Rice grassy stunt virus Shaxian isolate. J. Agric. Biotech. 11(2): 187–191.
Listihani L, Damayanti TA, Hidayat SH, & Wiyono S. 2020. First report of Cucurbit aphid-borne yellows virus on cucumber in Java, Indonesia. J. Gen. Plant Pathol. 86: 219–223. https://doi.org/10.1007/s10327-019-00905-2
Listihani L, Ariati PEP, Yuniti IGAD, & Selangga DGW. 2022a. The brown planthopper (Nilaparvata lugens) attack and its genetic diversity on rice in Bali, Indonesia. Biodiversitas. 23(9): 4696–4704. https://doi.org/10.13057/biodiv/d230936
Listihani L, Pandawani NP, Damayanti TA, Sutrawati M, Selangga DGW, Yuliadhi KA, Phabiola TA, & Wirya GNAS. 2022b. Distribution and molecular characterization of Squash mosaic virus on cucumber in Gianyar, Bali. J. Trop. Plant Pests Dis. 22(1): 48–54. https://doi.org/10.23960/jhptt.12248-54
Listihani L, Yuniti IGAD, Lestari PFK, & Ariati PEP. 2022c. First report of Sweet potato leaf curl virus (SPLCV) on Ipomoea batatas in Bali, Indonesia. Indian Phytopathology. 75(2): 595–598. https://doi.org/10.1007/s42360-022-00489-6
Listihani L, Ariati PEP, Yuniti IGAD, Wijaya LGAS, Yuliadhi KA, Selangga DGW, Wirya GNAS, Sudiarta IP, Sutrawati M, & Triwidodo H. 2023. Relationship study between the brown planthopper population and the intensity of Rice ragged stunt virus and Rice grassy stunt virus, as well as the inoculum sources. Intl. J. Agric. Technol. 19(3): 1055–1068.
Lu G, Li S, Zhou C, Qian X, Xiang Q, Yang T, Wu J, Zhou X, Zhou Y, Ding XS, & Tao X. 2019. Tenuivirus utilizes its glycoprotein as a helper component to overcome insect midgut barriers for its circulative and propagative transmission. PLoS Pathog. 15(3): e1007655. https://doi.org/10.1371/journal.ppat.1007655
Muduli L, Pradhan SK, Mishra A, Bastia DN, Samal KC, Agrawal PK, & Dash M. 2021. Understanding brown planthopper resistance in rice: genetics, biochemical and molecular breeding approaches. Rice Sci. 28(6): 532–546. https://doi.org/10.1016/j.rsci.2021.05.013
Nguyen TD, Lacombe S, Bangratz M, Ta HA, Vinh DN, Gantet P, & Brugidou C. 2015. p2 of Rice grassy stunt virus (RGSV) and p6 and p9 of Rice ragged stunt virus (RRSV) isolates from Vietnam exert suppressor activity on the RNA silencing pathway. Virus Genes. 51: 267–275. https://doi.org/10.1007/s11262-015-1229-2
Phatthalung TN & Tangkananond W. 2022. The infectivity survival and transmissibility of Rice ragged stunt virus from the frozen infected rice leaves by the brown planthopper, Nilaparvata lugens Stål. Trends. Sci. 19(14): 5097. https://doi.org/10.48048/tis.2022.5097 Plant Protection Research Institute (PPRI). 2012. Rice Virus in Vietnam (Present Status). Plant Protection Research Institute. Manila.
Satoh K, Yoneyama K, Kondoh H, Shimizu T, Sasaya T, Choi I-R, Yoneyama K, Omura T, & Kikuchi S. 2013. Relationship between gene responses and symptoms induced by Rice grassy stunt virus (RGSV). Front. Microbiol. 4: 313. https://doi.org/10.3389/fmicb.2013.00313
Selangga DGW & Listihani L. 2022. Squash leaf curl virus: Species of Begomovirus as the cause of butternut squash yield losses in Indonesia. Hayati J. Biosci. 29(6): 806–813. https://doi.org/10.4308/hjb.29.6.806-813
Selangga DGW, Listihani L, Temaja IGRM, Wirya GNAS, Sudiarta IP, & Yuliadhi KA. 2023. Determinants of symptom variation of Pepper yellow leaf curl Indonesia virus in bell pepper and its spread by Bemisia tabaci. Biodiversitas. 24(2): 869–877.
Selangga DGW, Temaja IGRM, Wirya GNAS, Sudiarta IP, & Listihani L. 2022. First report of Papaya ringspot virus-watermelon strain on melon (Cucumis melo L.) in Bali, Indonesia. Indian Phytopathol. 75(3): 911–914. https://doi.org/10.1007/s42360-022-00519-3
Suprihanto S, Somowiyarjo S, Hartono S, & Trisyono YA. 2015. Identification and molecular diversity of Rice ragged stunt virus and Rice grassy stunt virus in Java, Indonesia. IJSBAR. 24: 374–386.
Sutrawati M, Ganefianti DW, Sipriyadi S, Wibowo RH, Agustin Z, Listihani, & Selangga DGW. 2021. Disease incidence and molecular diversity of tungro virus on rice (Oryza sativa) in Bengkulu, Indonesia. Intl. J. Agric. Technol. 17(5): 1973–1984.
Ta HA, Nguyen DP, Causse S, Nguyen TD, Ngo VV, & Hébrard E. 2013. Molecular diversity of Rice grassy stunt virus in Vietnam. Virus Genes. 46(2): 383–386. https://doi.org/10.1007/s11262-012-0845-3
Tamura K, Stecher G, Peterson D, Filipski A, & Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30(12): 2725–2729. https://doi.org/10.1093/molbev/mst197
Temaja IGRM, Selangga DGW, Phabiola TA, Khalimi K, & Listihani L. 2022. Relationship between viruliferous Bemisia tabaci population and disease incidence of Pepper yellow leaf curl Indonesia virus in chili pepper. Biodiversitas. 23(10): 5360–5366. https://doi.org/10.13057/biodiv/d231046
Triwidodo H & Listihani L. 2020. High impact of PGPR on biostatistic of Aphis craccivora (Hemiptera: Aphididae) on yardlong bean. Biodiversitas. 21(9): 4016–4021. https://doi.org/10.13057/biodiv/d210912
Uehara-Ichiki T, Shiba T, Matsukura K, Ueno T, Hirae M, & Sasaya T. 2013. Detection and diagnosis of rice-infecting viruses. Front. Microbiol. 4: 289. https://doi.org/10.3389/fmicb.2013.00289
Upadhyaya NM, Yang M, Kositratana W, Ghosh A, & Waterhouse PM. 1995. Molecular analysis of rice ragged stunt oryzavirus segment 9 and sequence conservation among isolates from Thailand and India. Arch. Virol. 140(11): 1945–1956. https://doi.org/10.1007/BF01322684
Zhang C, Shi C, Chen D, & Wu J. 2018. Rice ragged stunt virus propagation and infection on rice plants. Bio-protocol. 8(20): e3060. https://doi.org/10.21769/BioProtoc.3060
Zhao F, Baek D, Igori D. Bae JY, Kim SM, Ra JE, Park KD, Lee BC, & Moon JS. 2017. Complete genome sequence of rice virus A, a new member of the family Tombusviridae. Arch Virol. 162: 3247–3250. https://doi.org/10.1007/s00705-017-3472-4