Begomoviruses on two chili types in Southeast Sulawesi Indonesia: variation of symptom severity assessment and DNA-betasatellite identification

Main Article Content

Muhammad Taufik
Muhammad Zamrun Firihu
Asmar Hasan
Gusnawaty HS
Viska Inda Variani
Syair
Muhammad Botek

Abstract

The association of viral satellite DNA with Begomoviruses influences symptom expression in infected plants. Normalized Difference Vegetation Index (NDVI) is an image processing method used to assess plant health based on the plant’s ability to absorb sunlight for photosynthesis. Therefore, this study aims to assess symptom severity based on symptom variation and NDVI, as well as to detect and identify the presence of beta-satellite DNA associated with chili plants. The study was conducted in North Kolaka Regency, Southeast Sulawesi Province, Indonesia. It involved observations and image recording of symptom variations in the sampled cayenne and big red chili plants, followed by the detection of beta-satellite DNA in the samples using the polymerase chain reaction (PCR). The results confirmed the presence of non-coding satellite DNA associated with the Pepper yellow leaf curl Indonesia virus (PepYLCIV) in all severe, mild, or asymptomatic plant samples. In the phylogenetic tree, the non-coding satellite DNA isolates from Southeast Sulawesi are included in the betasatellite group and exhibit different genetic characteristics from other isolates available in the GenBank database. The cayenne chili with severe symptoms had lower NDVI values than the mild and asymptomatic categories, indicating that this type of chili with severe symptoms had a lower ability to absorb light. Further studies are needed to characterize the alpha-satellite type in the Southeast Sulawesi region for potential use in cross-protection mechanisms against plant virus infections.

Article Details

How to Cite
(1)
Taufik, M.; Firihu, M. Z.; Hasan, A.; HS, G.; Variani, V. I.; Syair, S.; Botek, M. Begomoviruses on Two Chili Types in Southeast Sulawesi Indonesia: Variation of Symptom Severity Assessment and DNA-Betasatellite Identification. J Trop Plant Pests Dis 2023, 24, 1-9.


Section
Articles

References

Annisaa NW, Hidayat P, Giyanto, Hidayat SH, & Lee S. 2021. Multiple infections of Begomovirus on its host plants. IOP Conf. Ser.: Earth Environ. Sci. 694: 012047. https://doi.org/10.1088/1755-1315/694/1/012047

Arsi A, Suparman SHK, Lailaturrahmi, Hamidson H, Pujiastuti Y, Umayah A, Gunawan B, Pratama R, Irsan C, & Suwandi. 2023. Effects of holy basil (Ocimum sanctum) on viral disease of chili (Capsicum annum L.) under mixed crop cultivation. J. Trop. Plant Pests Dis. 23(2): 49–57. https://doi.org/10.23960/jhptt.22349-57

Bhattacharyya D & Chakraborty S. 2018. Chloroplast: the Trojan horse in plant–virus interaction. Mol. Plant Pathol. 19(2): 504–518. https://doi.org/10.1111/mpp.12533

Beisel NS, Callaham JB, Sng NJ, Taylor DJ, Paul AL, & Ferl RJ. 2018. Utilization of single-image normalized difference vegetation index (SI-NDVI) for early plant stress detection. Appl. Plant. Sci. 6(10): 1–10. https://doi.org/10.1002/aps3.1186

Briddon RW, Bull SE, Mansoor S, Amin I, & Markham PG. 2002. Universal primers for the PCR-mediated amplification of DNA ?: A molecule associated with some monopartite Begomoviruses. Mol. Biotechnol. 20: 315–318. https://doi.org/10.1385/MB:20:3:315

Fadhila C, Lal A, Vo TTB, Ho PT, Hidayat SH, Lee J, Kil EJ, & Lee S. 2020. The threat of seed-transmissible Pepper yellow leaf curl Indonesia virus in chili pepper. Microb. Pathog. 143: 104132. https://doi.org/10.1016/j.micpath.2020.104132

Fiallo-Olivé E, Bastidas L, Chirinos DT, & Navas-Castillo J. 2021. Insights into emerging Begomovirus–deltasatellite complex diversity: The first deltasatellite infecting legumes. Biology. 10(11): 1125. https://doi.org/10.3390/biology10111125

Gaswanto R, Syukur M, Hidayat SH, & Gunaeni N. 2016. Identifikasi gejala dan kisaran inang enam isolat Begomovirus cabai di Indonesia [Symptom and host range identification of six Chilli Begomovirus isolate in Indonesia]. J. Hort. 26(2): 223–234.

Gilbertson RL, Batuman O, Webster CG, & Adkins S. 2015. Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu. Rev. Virol. 2: 67–93. https://doi.org/10.1146/annurev-virology-031413-085410

Hasan A, Widodo, Mutaqin KH, Hidayat SH, & Taufik M. 2021a. Quantitative assessment of mosaic disease severity based on digital image processing. IOP Conf. Ser.: Earth Environ. Sci. 694: 012035. https://doi.org/10.1088/1755-1315/694/1/012043

Hasan A, Widodo, Mutaqin KH, Taufik M, & Hidayat SH. 2021b. Single image-NDVI method for early detection of mosaic symptoms in Capsicum annuum. Jurnal Fitopatologi Indonesia. 17(1): 9–18. https://doi.org/10.14692/jfi.17.1.9-18

Hasan A, Widodo, Mutaqin KH, Taufik M, & Hidayat SH. 2022. Characteristics of virus symptoms in chili plants (Capsicum frutescens) based on RGB image analysis. AGRIVITA Journal of Agricultural Science. 44(3): 459–469. https://doi.org/10.17503/agrivita.v41i0.3731

Horning. 2012. Public Lab: update on the photo monitoring plugin for ImageJ/Fiji. https://publiclab.org/notes/nedhorning/11-1-2012/update-photo-monitoring-plugin-imagejfiji

Idris AM, Shahid MS, Briddon RW, Khan AJ, Zhu JK, & Brown JK. 2011. An unusual alphasatellite associated with monopartite Begomoviruses attenuates symptoms and reduces betasatellite accumulation. J. Gen. Virol. 92(3): 706–717. https://doi.org/10.1099/vir.0.025288-0

Ilyas M, Qazi J, Mansoor S, & Briddon RW. 2010. Genetic diversity and phylogeography of Begomoviruses infecting legumes in Pakistan. J. Gen. Virol. 91(8): 2091–2101. https://doi.org/10.1099/vir.0.020404-0

Jamsari J & Pedri J. 2013. Complete nucleotide sequence of DNA a-like genome and DNA-? of monopartite Pepper yellow leaf curl virus, a dominant Begomovirus infecting Capsicum annuum in West Sumatera Indonesia. Asian J. Plant Pathol. 7(1): 1–14. https://doi.org/10.3923/ajppaj.2013.1.14

Kandito A, Hartono S, Sulandari S, Somowiyarjo S, & Widyasari YA. 2020. First report of naturally occurring recombinant non-coding DNA satellite associated with Tomato yellow leaf curl kanchanaburi virus on eggplant in Indonesia. Biodiversitas. 21(1): 129–136. https://doi.org/10.13057/biodiv/d210117

Kandito A, Hartono S, Sulandari S, & Somowiyarjo S. 2019. Molecular characterization of betasatellite associated with Begomovirus on Ageratum conyzoides in Magelang, Central Java. Jurnal Perlindungan Tanaman Indonesia. 23(2): 292–298. https://doi.org/10.22146/jpti.46579

Kandito A, Hartono S, Sulandari S, & Somowiyarjo S. 2021. A recombinant DNA?satellite associated with Pepper yellow leaf curl Indonesia virus in highland area. Indones. J. Biotechnol. 26(2): 82–90. https://doi.org/10.22146/IJBIOTECH.64817

Kenyon L, Tsai WS, Shih SL, & Lee LM. 2014. Emergence and diversity of Begomoviruses infecting solanaceous crops in East and Southeast Asia. Virus Res. 186: 104–113. https://doi.org/10.1016/j.virusres.2013.12.026

Kitchen NR & Goulding KWT. 2001. On-farm technologies and practices to improve nitrogen use efficiency. In: Follett RF & Hatfield JL (Eds.). Nitrogen in the Environment: Sources, Problems and Management. pp. 335–369. Elsevier B.V. https://doi.org/10.1016/B978-044450486-9/50015-7

Kon T, Kuwabara K, Hidayat SH, & Ikegami M. 2007. A begomovirus associated with ageratum yellow vein disease in Indonesia: Evidence for natural recombination between Tomato leaf curl Java virus and Ageratum yellow vein virus-[Java]. Arch. Virol. 152(6): 1147–1157. https://doi.org/10.1007/s00705-006-0928-3

Lavanya R & Arun V. 2021. Detection of Begomovirus in chilli and tomato plants using functionalized gold nanoparticles. Sci. Rep. 11: 14203. https://doi.org/10.1038/s41598-021-93615-9

Lei R, Jiang H, Hu F, Yan J, & Zhu S. 2016. Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection. Plant Cell Rep. 36(2): 327–341. https://doi.org/10.1007/s00299-016-2083-y

Nurulita S, Hidayat SH, Mutaqin KH, & Thomas JE. 2015. Molecular characterization of Begomovirus infecting yard long bean (Vigna unguiculata subsp. sesquipedalis L.) in Java, Indonesia. Biotropia. 22(1): 53–60. https://doi.org/10.11598/btb.2015.22.1.401

Özyavuz M, Bilgili BC, & Salici A. 2015. Determination of vegetation changes with NDVI method. J. Environ. Prot. Ecol. 16(1): 264–273.

Paradisa YB, Sulandari S, Hartono S, Somowiyarjo S, Windarningsih M, Sari DWK, & Handayani CR. 2022. Recombinant antibody production by cloning of Pepper yellow leaf curl Indonesia virus (PepYLCIV) coat protein gene. J. Trop. Plant Pests Dis. 22(1): 1–13. https://doi.org/10.23960/jhptt.1221-13

Pertiwi MAKP, Hartono S, Somowiyarjo S, Sulandari S, & Kandito A. 2021. Identifikasi molekuler satelit DNA yang berasosiasi dengan Mungbean yellow mosaic India virus pada kacang panjang di Yogyakarta [Molecular identification of Mungbean yellow mosaic India virus and its betasatellite associated with yellow mosaic on yardlong bean in Sleman, Yogyakarta]. Jurnal Fitopatologi Indonesia. 17(6): 251–260. https://doi.org/10.14692/jfi.17.6.251-260

Purwoko RR, Hartono S, Suputa, Lukman R, & Wahyudin D. 2015. Emerging Pepper yellow leaf curl virus and Mungbean yellow mosaic virus of single Bemisia tabaci in Java, Indonesia. The 11th International Student Conference. Ibaraki University. https://doi.org/10.13140/RG.2.1.4382.9849

Rojas MR, Gilbertson RL, Russell DR, and Maxwell DP. 1993. Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted Geminiviruses. Plant Dis. 77(4): 340–347. https://doi.org/10.1094/PD-77-0340

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, & Cardona A. 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9(7): 676–682. https://doi.org/10.1038/nmeth.2019

Selangga DGW & Listihani L. 2021. Molecular identification of Pepper yellow leaf curl Indonesia virus on chili pepper in Nusa Penida Island. J. Trop. Plant Pests Dis. 21(2): 97–102. https://doi.org/10.23960/jhptt.22197-102

Shingote PR, Wasule DL, Parma VS, Holkar SK, Karkute SG, Parlawar ND, & Senanayake DMJB. 2022. An overview of chili leaf curl disease: Molecular mechanisms, impact, challenges, and disease management strategies in Indian Subcontinent. Front. Microbiol. 13: 899512. https://doi.org/10.3389/fmicb.2022.899512

Solahudin M, Pramudya B, Liyantono, Supriyanto, & Manaf R. 2015. Gemini virus attack analysis in field of chili (Capsicum annuum L.) using aerial photography and bayesian segmentation method. Procedia Environ. Sci. 24: 254–257. https://doi.org/10.1016/j.proenv.2015.03.033

Subiastuti AS, Hartono S, & Daryono BS. 2019. Detection and identification of Begomovirus infecting Cucurbitaceae and Solanaceae in Yogyakarta, Indonesia. Biodiversitas. 20(3): 738–744. https://doi.org/10.13057/biodiv/d200318

Sutrawati M, Hidayat SH, Suastika G, Sukarno BPW, & Nurmansyah A. 2020. Penyakit mosaik kuning pada kedelai [Yellow mosaic disease on soybean]. Jurnal Fitopatologi Indonesia. 16(1): 30–36. https://doi.org/10.14692/jfi.16.1.30-36

Wilisiani F, Mashiko T, Wang WQ, Suzuki T, Hartono S, Neriya Y, Nishigawa H, & Natsuaki T. 2019. New recombinant of Tomato leaf curl New Delhi virus infecting melon in Indonesia. J. Gen. Plant Pathol. 85(4): 306–310. https://doi.org/10.1007/s10327-019-00849-7

Wilisiani F, Somowiyarjo S, & Hartono S. 2014. Identifikasi molekuler virus penyebab penyakit daun keriting isolat Bantul pada melon [Molecular identification of virus causing leaf curl disease Bantul isolate on melon]. Jurnal Perlidungan Tanaman Indonesia. 18(1): 47–54.

Zhao F, Li Y, Chen L, Zhu L, Ren H, Lin H, & Xi D. 2016. Temperature dependent defence of Nicotiana tabacum against Cucumber mosaic virus and recovery occurs with the formation of dark green islands. J. Plant Biol. 59: 293–301. https://doi.org/10.1007/s12374-016-0035-2