Distribution of Diaphorina citri, a citrus huanglongbing vector in Indonesia and new locality records
Main Article Content
Abstract
The Asiatic citrus psyllid (Diaphorina citri) is the primary vector of the destructive citrus disease huanglongbing (HLB), posing a significant threat to citrus production in Indonesia. Systematic surveys of D. citri are essential for identifying areas at high risk of HLB outbreaks and for supporting sustainable disease management. This study aimed to assess the population distribution of D. citri in major citrus-producing regions of Indonesia and to evaluate its potential risk for HLB spread. The research was conducted over two consecutive years (2022–2023) across key citrus production areas on the islands of Java, Sumatra, Kalimantan, and Bali. A total of 206 sampling sites were surveyed using direct manual inspection and two types of yellow traps. D. citri was detected at 35 locations, representing new country records. The distribution pattern was relatively uniform in Sumatra but more scattered in Java and Kalimantan, with the highest population densities observed in the lowland areas of Bengkulu. These findings provide critical insights into D. citri distribution patterns and support targeted surveillance and sustainable management strategies to mitigate the impact of HLB in Indonesia.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Agustí M, Reig C, Martínez-Fuentes A, & Mesejo C. 2022. Advances in citrus flowering: A review. Front. Plant Sci. 13: 868831. https://doi.org/10.3389/FPLS.2022.868831
Ahmad S, Asim M, Majeed MZ, Atiq M, Ali Y, Ahmad HB, Rehman MA, & Akhtar N. 2023. Population dynamics and epidemiology of Diaphorina citri in relation to yield losses caused by citrus greening. Punjab Univ. J. Zool. 38(1): 81–88. https://doi.org/10.17582/JOURNAL.PUJZ/2023.38.1.81.88
Arry S, Zuhran M, & Purbiati T. 2017. Effectiveness of huanglongbing vector (Diaphorina citri Kuwayama) control in citrus grower group based in Sambas Regency of West Kalimantan, Indonesia. RJOAS. 12(72): 320–326. https://doi.org/10.18551/RJOAS.2017-12.45
Ashari H, Hanif Z, & Supriyanto A. 2015. Kajian dampak iklim ekstrim curah hujan tinggi (La-Nina) pada jeruk siam (Citrus nobilis var. microcarpa) di Kabupaten Banyuwangi, Jember dan Lumajang [Study on the impact of extreme climate with high rainfall (La-Nina) on siam citrus (Citrus nobilis var. microcarpa) in Banyuwangi, Jember, and Lumajang Regencies]. Planta Tropika: Journal of Agro Science. 2(1): 49–55. https://doi.org/10.18196/pt.2014.023.49-55
Berk Z. 2016. Diseases and Pests. In: Citrus Fruit Processing. pp. 83–93. Academic Press. United States. https://doi.org/10.1016/B978-0-12-803133-9.00005-9
Budiarto R, Poerwanto R, Santosa E, & Efendi D. 2018. Shoot manipulations improve flushing and flowering of mandarin citrus in Indonesia. J. Appl. Hortic. 20(2): 112–118. https://doi.org/10.37855/jah.2018.v20i02.20
CABI & EPPO. 2006. Diaphorina citri [Distribution map]. Distribution Maps of Plant Pests. pp. 334.https://doi.org/10.1079/DMPP/20066600334
CABI. 2012. Distribution Maps of Plant Diseases Present: National record 878, Candidatus Liberibacter asiaticus. Southwest Florida Research & Education Center Library. Walling Ford, UK. https://swfrec.ifas.ufl.edu/hlb/database/pdf/22_EPPO_12.pdf. Accessed 12 June 2024.
Davis RI, Gunua TG, Kame MF, Tenakanai D, & Ruabete TK. 2005. Spread of citrus huanglongbing (greening disease) following incursion into Papua New Guinea. Australas. Plant Pathol. 34(4): 517–524. https://doi.org/10.1071/AP05059
Davis RI, Jones LM, Pease B, Perkins SL, Vala HR, Kokoa P, Apa M, & Dale CJ. 2021. Plant virus and virus-like disease threats to Australia’s North targeted by the Northern Australia quarantine strategy. Plants. 10(10): 2175. https://doi.org/10.3390/plants10102175
Foda YL, Wibowo L, Lestari P, & Hasibuan R. 2021. Inventarisasi dan intensitas serangan hama tanaman jeruk (Citrus sinensis L.) di Kecamatan Sekampung Udik Kabupaten Lampung Timur [Inventory and attack intensity of pest on citrus plants (Citrus sinensis L.) in Sekampung Udik Subdistrict, East Lampung Regency]. Jurnal Agrotek Tropika. 9(3): 367–376. https://doi.org/10.23960/jat.v9i3.5276
Grafton-Cardwell EE, Stelinski LL, & Stansly PA. 2013. Biology and management of Asian citrus psyllid, vector of the huanglongbing pathogens. Annu. Rev. Entomol. 58: 413–432. https://doi.org/10.1146/annurev-ento-120811-153542
Graham JH, Bassanezi RB, Dawson WO, & Dantzler R. 2024. Management of huanglongbing of citrus: Lessons from São Paulo and Florida. Annu. Rev. Phytopathol. 62: 243–262. https://doi.org/10.1146/annurev-phyto-121423-041921
Hakim ML & Wahyuningsih S. 2020. Analisis Kinerja Perdagangan Jeruk Semester I Tahun 2020 [Analysis of Citrus Trade Performance in the First Semester of 2020]. Pusat Data dan Sistem Informasi Pertanian Kementerian Pertanian. Indonesia. https://satudata.pertanian.go.id/details/publikasi/199. Accessed 24 June 2024.
Hall DG, Sétamou M, & Mizell III RF. 2010. A comparison of sticky traps for monitoring Asian citrus psyllid (Diaphorina citri Kuwayama). Crop Prot. 29(11): 1341–1346. https://doi.org/10.1016/j.cropro.2010.06.003
Himawan A, Sumardiyono Y, Somowiyarjo S, Trisyono YA, & Beattie A. 2011. Deteksi menggunakan PCR (Polymerase Chain Reaction) Candidatus Liberibacter asiaticus, penyebab huanglongbing pada jeruk siem dengan beberapa tipe gejala pada daun [Detection using PCR (Polymerase Chain Reaction) Candidatus Liberibacter asiaticus, huanglongbing causal organism on siem mandarin with different types of symptoms]. J Trop Plant Pests Dis. 10(2): 178–183. https://doi.org/10.23960/j.hptt.210178-183
Hosseinzadeh S & Heck M. 2023. Variations on a theme: Factors regulating interaction between Diaphorina citri and “Candidatus Liberibacter asiaticus” vector and pathogen of citrus huanglongbing. Curr. Opin. Insect Sci. 56: 101025. https://doi.org/10.1016/j.cois.2023.101025
Ibanez F, Racine K, Hoyte A, & Stelinski LL. 2019. Reproductive performance among color morphs of Diaphorina citri Kuwayama, vector of citrus greening pathogens. J. Insect Physiol. 117: 103904. https://doi.org/10.1016/j.jinsphys.2019.103904
Kasinathan T, Singaraju D, & Uyyala SR. 2021. Insect classification and detection in field crops using modern machine learning techniques. Information Processing in Agriculture, 8(3), 446–457. https://doi.org/10.1016/J.INPA.2020.09.006
Kondo T, González FG, Tauber C, Sarmiento YCG, Mondragon AFV, & Forero D. 2015. A checklist of natural enemies of Diaphorina citri Kuwayama (Hemiptera: Liviidae) in the department of Valle del Cauca, Colombia and the world. Insecta Mundi. 0457: 1–16. http://hdl.handle.net/20.500.12324/40676. Accessed 24 June 2024.
Leong SS, Leong SCT, & Beattie GAC. 2022. Integrated pest management strategies for Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae) and huanglongbing in citrus for Sarawak, East Malaysia, Borneo. Insects. 13(10): 960. https://doi.org/10.3390/insects13100960
Lestiyani A, Joko T, Holford P, Beattie GAC, Donovan N, Mo J, Subandiyah S, & Iwanami T 2024. Natural Infection of Murraya paniculata and Murraya sumatrana with ‘ Candidatus Liberibacter asiaticus’ in Java. Plant Dis. https://doi.org/10.1094/pdis-12-23-2593-re
Marisna I, Soffan A, Subandiyah S, Cen Y, & Joko T. 2024. The feeding behavior of Diaphorina citri monitored by using an electrical penetration graph (DC-EPG) on citrus plants treated with Bacillus cereus and Bacillus velezensis. J. Plant Prot. Res. 64(3): 234–241. https://doi.org/10.24425/jppr.2024.151815
Pelz-Stelinski KS, Martini X, Kingdom-Gibbard H, & Stelinski LL. 2017. Patterns of habitat use by the Asian citrus psyllid, Diaphorina citri, as influenced by abiotic and biotic growing conditions. Agric. For Entomol. 19(2): 171–180. https://doi.org/10.1111/afe.12197
Rodríguez-Aguilar O, López-Collado J, Soto-Estrada A, Vargas-Mendoza MDLC, & García-Avila CDJ. 2023. Future spatial distribution of Diaphorina citri in Mexico under climate change models. Ecol. Complex. 53: 101041. https://doi.org/10.1016/j.ecocom.2023.101041
Rumada IW, Rai IN, & Dwiyani R. 2021. Pembuahan jeruk sam (Citrus microcarpa L.) di luar musim dengan perlakuan induksi pembungaan dan zat pemecah dormansi [Fertilization outside the season of siam orange (Citrus microcarpa L.) with induction of flowering and dormancy breaking substances]. Agrotrop. 11(1): 10–20. https://doi.org/10.24843/ajoas.2021.v11.i01.p02
Setyaningrum H, Martono E, Mo J, Subandiyah S, Soffan A, & Joko T. 2025. Evaluation of acid-based pheromone for monitoring Diaphorina citri, vector of huanglongbing diseases under tropical climate. Pak. J. Biol. Sci. 28(6): 383–391. https://doi.org/10.3923/pjbs.2025.383.391
Setyaningrum H, Martono E, Soffan A, & Mo J. 2023. Best practices intercropping citrus controlling Asian citrus psyllids (Diaphorina citri) in Indonesia. Proceedings of the 3rd International Conference on Smart and Innovative Agriculture (ICoSIA 2022). pp. 591–596. Atlantis Press. https://doi.org/10.2991/978-94-6463-122-7_56
Shrestha B, Martini X, & Stelinski LL. 2021. Population fluctuations of Diaphorina citri and its natural enemies in response to various management practices in Florida. Fla. Entomol. 104(3): 178–185. https://doi.org/10.1653/024.104.0306
Snyder J, Dickens KL, Halbert SE, Dowling S, Russell D, Henderson R, Rohrig E, & Ramadugu C. 2022a. The development and evaluation of insect traps for the Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae), vector of citrus huanglongbing. Insects. 13(3): 295. https://doi.org/10.3390/insects13030295
Snyder J, Dowling S, Rohrig E, Halbert S, Ramadugu C, Simmons G, Mizell R, & Henderson R. 2022b. Field Assays of 3D Printed Asian Citrus Psyllid (Diaphorina citri) Trapping Systems. https://www.fdacs.gov/content/download/101970/file/2019-poster-presentation.pdf. Accessed 12 June 2024.
Souza PGC, Aidoo OF, Farnezi PKB, Heve WK, Júnior PAS, Picanço MC, Ninsin KD, Ablormeti FK, Shah MA, Siddiqui SA, & Silva RS. 2023. Tamarixia radiata global distribution to current and future climate using the climate change experiment (CLIMEX) model. Sci. Rep. 13: 1823. https://doi.org/10.1038/s41598-023-29064-3
Souza PGC, Aidoo OF, Araújo FHV, da Silva RS, Júnior PAS, Farnezi PKB, Picanço MC, Sètamou M, Ekesi S, & Borgemeister C. 2024. Modelling the potential distribution of the Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae) using CLIMEX. Int. J. Trop. Insect Sci. 44(2): 771–787. https://doi.org/10.1007/s42690-024-01191-y
Subandiyah S, Nikoh N, Tsuyumu S, Somowiyarjo S, & Fukatsu T. 2000. Complex endosymbiotic microbiota of the citrus psyllid Diaphorina citri (Homoptera: Psylloidea). Zool. Sci. 17(7): 983–989. https://doi.org/10.2108/zsj.17.983
Tsai JH, Wang JJ, & Liu YH. 2002. Seasonal abundance of the Asian citrus psyllid, Diaphorina citri (Homoptera: Psyllidae) in Southern Florida. Fla. Entomol. 85(3): 446–451. https://doi.org/10.1653/0015-4040(2002)085[0446:SAOTAC]2.0.CO;2
Urbaneja A, Grout TG, Gravena S, Wu F, Cen Y, & Stansly PA. 2020. Citrus pests in a global world. In: Talon M, Caruso M, & Gmitter Jr FG (Eds.). The Genus Citrus. pp. 333–348. Woodhead Publishing. United Kingdom. https://doi.org/10.1016/B978-0-12-812163-4.00016-4
Wang R, Yang H, Wang M, Zhang Z, HuangT, Wen G, & Li Q. 2020. Predictions of potential geographical distribution of Diaphorina citri ( Kuwayama ) in China under climate change scenarios. Sci. Rep. 10: 9202. https://doi.org/10.1038/s41598-020-66274-5
Weinert MP, Jacobson SC, Grimshaw JF, Bellis GA, Stephens PM, Gunua TG, Kame MF, & Davis RI. 2004. Detection of huanglongbing (citrus greening disease) in Timor-Leste (East Timor) and in Papua New Guinea. Australas. Plant Pathol. 33: 135–136. https://doi.org/10.1071/AP03089
Widyaningsih S, Utami SNH, Joko T, & Subandiyah S. 2017. Development of disease and growth on six scion/rootstock combinations of citrus seedlings under huanglongbing pressure. J. Agric. Sci. 9(6): 229–238. https://doi.org/10.5539/jas.v9n6p229
Widyaningsih S, Utami SNH, Joko T, & Subandiyah S. 2019. Plant response and huanglongbing disease development against heat treatments on ‘Siam Purworejo’ (Citrus nobilis (Lour)) and ‘Nambangan’ (C. maxima (Burm.) Merr.) under field condition. Arch. Phytopathol. Pflanzenschutz. 52(3–4): 259–276. https://doi.org/10.1080/03235408.2018.1544193
Wu F, Dai Z, Shi M, Huang J, Zhu H, Zheng Y, Chen Z, Li X, Deng X, & Fox EGP. 2024. Tracking the geographical distribution of the Asian citrus psyllid Diaphorina citri throughout China using mitogenomes and endosymbionts. J. Pest Sci. 98: 1173–1185. https://doi.org/10.1007/s10340-024-01834-6
Yang Z, Wu Q, Fan J, Huang J, Wu Z, Lin J, Bin S, & Shu B. 2021. Effects of the entomopathogenic fungus Clonostachys rosea on mortality rates and gene expression profiles in Diaphorina citri adults. J. Invertebr. Pathol. 179: 107539. https://doi.org/10.1016/j.jip.2021.107539
Zamzami L, Sugiyatno A, & Harwanto. 2021. Innovation characteristics and adoption opportunity of Bujangseta technology for tangerine farming. Caraka Tani: J. Sustain. Agric. 36(1): 144–154. https://doi.org/10.20961/carakatani.v36i1.43381
Zuhran M, Mudjiono G, & Puspitarini RD. 2021. Pengaruh pengelolaan agroekosistem terhadap kelimpahan kutu loncat jeruk Diaphorina citri Kuwayama (Hemiptera: Liviidae) [The effect of agroecosystem management on the abundance of Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae)]. Indonesian Journal of Entomology. 18(2): 102–114. https://doi.org/10.5994/jei.18.2.102