Detection and biocontrol of Tobamovirus tabaci infecting tomato in Iraq

Main Article Content

Hind Jassim Ahmed
Nawres Abdulelah Sadeq Al-Kuwaiti

Abstract

The antiviral activity of leaf extracts from Datura stramonium and tomato plants inoculated with TMV, combined with 20% skimmed milk, was investigated. A TMV isolate was confirmed using bioassay, serological, and molecular approaches and subsequently used to inoculate plants. Tomato plants, both pre- and post-inoculated with TMV, were sprayed with leaf extracts from either TMV-free or infected plants, alone or mixed with 20% skimmed milk. Enzyme-linked immunosorbent assay (ELISA) using tobamovirus-specific antibodies and local lesion tests were conducted to assess antiviral activity based on virus concentration and infectivity in treated plants. The experiment followed a completely randomized design (CRD), and the Least Significant Difference (LSD) test was applied to evaluate ELISA optical density (OD) values. OD data revealed that the combination treatment (inoculated tomato leaf extract + 20% skimmed milk) inhibited TMV in tomato plants by up to 56%, showing the highest antiviral activity. This study is the first to investigate the antiviral potential of leaf extracts from TMV-infected plants.

Article Details

How to Cite
(1)
Ahmed, H. J. .; Al-Kuwaiti, N. A. S. . Detection and Biocontrol of Tobamovirus Tabaci Infecting Tomato in Iraq. J Trop Plant Pests Dis 2025, 25, 158-168.


Section
Articles

References

Adhab M & Alkuwaiti NA. 2022. Geminiviruses occurrence in the middle east and their impact on agriculture in Iraq. In: Gaur RK, Sharma P, & Czosnek H. (eds.). Geminivirus: Detection, Diagnosis and Management. pp. 171–185. Cambridge Press. USA. https://doi.org/10.1016/B978-0-323-90587-9.00021-3

Adhab M, Al-Kuwaiti N, Al-Ani R. 2021. Biodiversity and occurrence of plant viruses over four decades: Case study for Iraq. 2021 Third International Sustainability and Resilience Conference: Climate Change. Sakheer, Bahrain. pp. 159–163. https://doi.org/10.1109/IEEECONF53624.2021.9668128

Akbar S, Wei Y, & Zhang MQ. 2022. RNA interference: Promising approach to combat plant viruses. Int. J. Mol. Sci. 23(10): 5312. https://doi.org/10.3390/ijms23105312

Alon DM, Hak H, Bornstein M, Pines G, & Spiegelman Z. 2021. Differential Detection of the Tobamoviruses tomato mosaic virus (ToMV) and Tomato crown rugose fruit virus (ToBRFV) using CRISPR-Cas12a. Plants. 10(6): 1256. https://doi.org/10.3390/plants10061256

Andayanie WR, Nuriana W, & Ermawati N. 2020. Antiviral activity of cashew nut shell extract against Cowpea mild mottle virus on soybean. J. Trop. Plant Pests Dis. 19(2): 170–178. https://doi.org/10.23960/j.hptt.219170-178

Ara I, Bukhari NA, Aref NM, Shinwari MMA, & Bakir MA. 2012. Antiviral activities of streptomycetes against Tobacco mosaic virus (TMV) in Datura plant: Evaluation of different organic compounds in their metabolites. Afr. J. Biotech. 11(8): 2130–2138. https://doi.org/10.5897/AJB11.3388

Balla A, Silini A, Cherif-Silini H, Bouket AC, Alenezi FN, & Belbahri L. 2022. Recent advances in encapsulation techniques of plant growth-promoting microorganisms and their prospects in the sustainable agriculture. Appl. Sci. 12(18): 9020. https://doi.org/10.3390/app12189020

Caruso AG, Bertacca S, Parrella G, Rizzo R, Davino S, & Panno S, 2022. Tomato brown rugose fruit virus: A pathogen that is changing the tomato production worldwide. Ann. Appl. Biol. 181(3): 258–274. https://doi.org/10.1111/aab.12788

Chanda B, Shamimuzzaman Md, Gilliard A, & Ling KS. 2021. Effectiveness of disinfectants against the spread of tobamoviruses: Tomato brown rugose fruit virus and Cucumber green mottle mosaic virus. Virol. J. 18: 7. https://doi.org/10.1186/s12985-020-01479-8

CSO. 2023. Statistical Group part 3. In: gricultural Statistic. Central Statistical Organization, Iraq. https://cosit.gov.iq/documents/AAS2023/3.pdf. Accessed 30 May 2024.

Dutta P, Kumari A, Mahanta M, Biswas KK, Dudkiewicz A, Thakuria D, Abdelrhim AS, Singh SB, Muthukrishnan G, Sabarinathan KG, Mandal MK, & Mazumdar N. 2022. Advances in nanotechnology as a potential alternative for plant viral disease management. Front. Microbiol. 13: 935193. https://doi.org/10.3389/fmicb.2022.935193

FAO. 2023. FAOSTAT. In: Crops and Livestock Products. Food and Agriculture Organization. https://www.fao.org/faostat/en/#data/QCL. Accessed 30 May 2024.

Hamdi RF, Owaid ZM, Omer AO, Kafi FN, & Luhemus HH. 2020. Biological control on Tomato Mosaic Virus (ToMV) by using some plant extracts. Syst. Rev. Pharm. 11(12): 1078–1082.

Han?inský R, Mihálik D, Mrkvová M, Candresse T, & Glasa M. 2020. Plant viruses infecting Solanaceae family members in the cultivated and wild environments: A review. Plants. 9(5): 667. https://doi.org/10.3390/plants9050667

ICTV. 2024. Virus Taxonomy. In: The ICTV report on virus classification and taxon nomenclature. https://ictv.global/report/chapter/virgaviridae/virgaviridae/tobamovirus. Accessed 2 July 2024.

Ishibashi K, Kubota K, Kano A, & Ishikawa M. 2023. Tobamoviruses: Old and new threats to tomato cultivation. J. Gen. Plant Pathol. 89: 305–321. https://doi.org/10.1007/s10327-023-01141-5

Je?ewska M, Trzmiel K, & Zarzy?ska-Nowak A. 2018. Detection of infectious tobamoviruses in irrigation and drainage canals in Greater Poland. J. Plant Prot. Res. 58(2): 202–205. https://doi.org/10.24425/119126

Letschert B, Adam G, Lesemann DE, Willingmann P, & Heinze C. 2002. Detection and differentiation of serologically cross-reacting tobamoviruses of economical importance by RT-PCR and RT-PCR-RFLP. J. Virol. Methods. 106(1): 1–10. https://doi.org/10.1016/s0166-0934(02)00135-0

Lewandowski DJ, Hayes AJ, & Adkins S. 2010. Surprising results from a search for effective disinfectants for Tobacco mosaic virus–contaminated tools. Plant Dis. 94(5): 542–550. https://doi.org/10.1094/PDIS-94-5-0542

Luria N, Smith E, Reingold V, Bekelman I, Lapidot M, Levin I, Elad N, Tam Y, Sela N, Abu-Ras A, Ezra N, Haberman A, Yitzhak L, Lachman O, & Dombrovsky A. 2017. A New Israeli Tobamovirus isolate infects tomato plants Harboring Tm-22 resistance genes. PLoS One. 12(1): e0170429. https://doi.org/10.1371/journal.pone.0170429

Mihálik D, Han?inský R, Ka?uková Š, Mrkvová M, & Kraic J. 2022. Elicitation of hyoscyamine production in Datura stramonium L. plants using Tobamoviruses. Plants. 11(23): 3319. https://doi.org/10.3390/plants11233319

Mheedi RN & Ali HH. 2023. Inducing the resistance against Tobacco mosaic virus in pepper using the extracts of Datura stramonium and Ganoderma lucidum. J. Biopest. 16(2): 179–184. https://doi.org/10.57182/jbiopestic.16.2.179-184

Monjezi E, Aeini M, Tabein S, & Parizipour MHG. 2023. Biocontrol of tomato mosaic disease by multiple applications of brown alga (Sargassum angustifolium) extract, Pseudomonas fluorescens, and Bacillus subtilis. Braz. Arch. Biol. Technol. 66: e23220103. https://doi.org/10.1590/1678-4324-2023220103

Muhire BM, Varsani A, & Martin DP. 2014. SDT: A virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One. 9(9): e108277. https://doi.org/10.1371/journal.pone.0108277

Obaid HK & Adhab M. 2025. Outbreak of tobamoviruses and potexviruses associated with disease epidemics in tomato production area of Iraq. Iraqi J. Agric. Sci. 56(Special): 237–246. https://doi.org/10.36103/bnvh7n83

Panno S, Davino S, Caruso AG, Bertacca S, Crnogorac A, Mandi? A, Noris E, & Mati? S. 2021. A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the Mediterranean basin. Agronomy. 11(11): 2188. https://doi.org/10.3390/agronomy11112188

Putri MM & Damayanti TA. 2020. Utilization of plant extracts to suppress Squash mosaic virus infection on ridged gourd (Luffa acutangula [L.Roxb]). J. Trop. Plant Pests Dis. 20(2): 108–115. https://doi.org/10.23960/jhptt.220108-115

Rivarez MPS, Vu?urovi? A, Mehle N, Ravnikar M, & Kutnjak D. 2021. Global advances in tomato virome research: Current status and the impact of high-throughput sequencing. Front. Microbiol. 12: 671925. https://doi.org/10.3389/fmicb.2021.671925

Rodríguez-Díaz CI, Zamora-Macorra EJ, Ochoa-Martínez DL, & González-Garza R. 2022. Disinfectants effectiveness in Tomato brown rugose fruit virus (ToBRFV) transmission in tobacco plants. Rev. Mex. Fitopatol. 40(2): 240–253. https://doi.org/10.18781/r.mex.fit.2111-2

Saitou N & Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4): 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Sambrook JF & Russell D. 2006. Condensed Protocols: from Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, USA.

Tamura K, Stecher G, & Kumar S. 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38(7): 3022–3027. https://doi.org/10.1093/molbev/msab120

Zaitlin M. 2000. Tobacco mosaic virus. DPV NO: 370. Descriptions of Plant Viruses (DPV). Association of Applied Biology. https://www.dpvweb.net/dpv/showdpv/?dpvno=370. Accessed 30 June 2024.

Zheng X, Li Y, & Liu Y. 2024. Plant immunity against Tobamoviruses. Viruses. 16(4): 530. https://doi.org/10.3390/v16040530

Zuckerkandl E & Pauling L. 1965. Evolutionary divergence and convergence in proteins. In Bryson V & Vogel H (eds.). Evolving Genes and Proteins. pp. 97–166. Academic Press. Cambridge. https://doi.org/10.1016/C2013-0-11981-2