Identification of plant growth promoting rhizobacteria around Pulang Pisang Food Estate, Central Kalimantan, Indonesia

Main Article Content

Lutfi Tri Andriani
Susilo Hambeg Poromarto
Supyani
Edi Purwanto
Hadiwiyono

Abstract

Plant growth-promoting bacteria are well known as biostimulants, biofertilizers, bioprotectants, and biodegraders. The Pulang Pisau Food Estate is an Indonesian government program aimed at increasing rice crop production to achieve sustainable food self-sufficiency. Research on rhizobacteria in the Pulang Pisau Food Estate area is still relatively limited. In this study, we conducted in vitro assays to evaluate the potential of indigenous bacterial isolates from the Pulang Pisau Food Estate as plant growth-promoting rhizobacteria (PGPR). The study focused on four bacterial isolates, which were tested for plant growth-promoting traits including phosphate solubilization, indole-3-acetic acid (IAA) production, effects on rice seed germination, and detached leaf assays to assess the ability of rhizobacteria to inhibit bacterial pathogens. The results of 16S rRNA gene identification suggested that isolates UNS-P1, UNS-P3, and UNS-R1 were closely related to Bacillus cereus, while one previously identified isolate (UNS-R2) was confirmed as Bacillus subtilis. All bacterial strains were able to produce IAA, while only one isolate demonstrated the ability to solubilize phosphate. In the germination test, no significant differences were observed in root length, but a significant difference in shoot (plant) height was detected. Bacillus subtilis (UNS-R2), at a 10³ dilution, resulted in significantly greater plant height compared to other treatments. Among the four bacterial isolates, only one showed the ability to inhibit the pathogen Pantoea ananatis. These results suggest that indigenous bacterial isolates from the Pulang Pisau Food Estate have potential as plant growth-promoting rhizobacteria (PGPR) and may contribute to enhancing plant growth and serve as biocontrol agents against P. ananatis.

Article Details

How to Cite
(1)
Andriani, L. T.; Poromarto, S. H. .; Supyani, S.; Purwanto, E. . .; Hadiwiyono, H. Identification of Plant Growth Promoting Rhizobacteria Around Pulang Pisang Food Estate, Central Kalimantan, Indonesia. J Trop Plant Pests Dis 2025, 25, 169-178.


Section
Articles

References

Abdel-Gaied TG, Abd-El-Khair H, Youssef MM, El-Maaty SA, & Mikhail MS. 2022. First report of strawberry bacterial leaf blight caused by Pantoea ananatis in Egypt. J. Plant Prot. Res. 62(2): 207–214. https://doi.org/10.24425/jppr.2022.141359

Aksoy HM & Boluk E. 2019. First report of Pantoea ananatis in japonia rice varieties in Turkey. J. Plant Pathol. 101: 409. https://doi.org/10.1007/s42161-018-0178-8

Alawiye TT & Babalola OO. 2019. Bacterial diversity and community structure in typical plant rhizosphere. Diversity. 11(10): 179. https://doi.org/10.3390/d11100179

Aregbesola E, Ortega-Beltran A, Falade T, Jonathan G, Hearne S, & Bandyopadhyay R. 2020. A detached leaf assay to rapidly screen for resistance of maize to Bipolaris maydis, the causal agent of southern corn leaf blight. Eur. J. Plant Pathol. 156: 133–145. https://doi.org/10.1007/s10658-019-01870-4

Ariyani MD, Dewi TK, Pujiyanto S, & Suprihadi A. 2021. Isolasi dan karakterisasi plant growth promoting rhizobacteria dari perakaran kelapa sawit pada lahan gambut [Isolation and characterization of plant growth promoting rhizobacteria from oil palm roots on peatlands]. Bioma: Berkala Ilmiah Biologi. 23(2): 159–171. https://doi.org/10.14710/bioma.23.2.159-171

Cahyaty RAA. 2007. Pengaruh Salinitas dan Aplikasi Bakteri Rhizosfer Toleran Salin terhadap Komponen Hasil Tanaman Mentimun [Effect of Salinity and Application of Saline Tolerant Rhizobacteria on Cucumber Yield Components]. Thesis. University of Brawijaya. Malang.

Chowdhury SP, Hartmann A, Gao X, & Borriss R. 2015. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42– a review. Front. Microbiol. 6: 780. https://doi.org/10.3389/fmicb.2015.00780

Fallo G, Banusu MS, Pardosi L, & Tefa A. 2023. Isolasi dan identifikasi bakteri rhizosfer dari tanaman gude (Cajanus cajan L) sebagai penghasil hormon IAA (Indole Acetic Acid) dan aplikasinya pada benih padi (Oryza sativa L) [Isolation and identification of rhizosphere bacteria from pigeon peas (Cajanus cajan L) as the producer of IAA hormone (Indole Acetic Acid) and its application on rice seeds (Oryza sativa L)]. Berita Biologi. 22(1): 129–138. https://doi.org/10.55981/beritabiologi.2023.803

Hidayati N, Salamiah S, Wahdah R, & Razie F. 2022. Identification of acid-resistant PGPR potential as stem rot antagonists and biofertilizers from peatlands of Central Kalimantan. Int. J. Biosci. 20(6): 269–279.

Istikorini Y, Nurhafifah, Hartoyo APP, Solikhin A, & Octiaviani, EA. 2022. Effect of plant growth-promoting rhizobacteria and bionanomaterial membrane applications on chemical properties of peat soils. IOP Conf. Ser.: Earth Environ. Sci. 959: 012049. https://doi.org/10.1088/1755-1315/959/1/012049

Jeyanthi V & Kanimozhi S. 2018. Plant Growth Promoting Rhizobacteria (PGPR)-prospective and mechanisms: A review. J. Pure Appl. Microbiol. 12(2): 733–749. https://doi.org/http://dx.doi.org/10.22207/JPaM.12.2.34

Kai M. 2020. Diversity and distribution of volatile secondary metabolites throughout Bacillus subtilis isolates. Front. Microbiol. 11: 559. https://doi.org/10.3389/fmicb.2020.00559

Kini K, Agnimonhan R, Afolabi O, Milan B, Soglonou B, Gbogbo V, Koebnik R, & Silué D. 2017. First report of a new bacterial leaf blight of rice caused by Pantoea ananatis and Pantoea stewartii in Benin. Plant Dis. 101(1): 241–242. https://doi.org/10.1094/PDIS-06-16-0940-PDN

Lestari SR, Choliq FA, Sektiono AW, Hadi MS, Aditya HF, Rahmadhini N, Kusuma RM, & Setiawan Y. 2022. Screening of quorum quenching activity of rhizobacteria against Pectobacterium carotovorum subsp. carotovorum. Biodiversitas. 23(8): 4336–4342. https://doi.org/10.13057/biodiv/d230859

Luna E, Lang J, McClung A, Wamishe Y, Jia Y, & Leach JE. 2018. First report of Rice Bacterial leaf Blight Disease Caused by Pantoea ananatis in the United States. Plant dis. 107: 7. https://doi.org/10.1094/PDIS-08-22-2014-PDN

Mamede MC, Tebaldi ND, Mota LCBM, Martins OM, & Coelho L. 2018. Detection of Pantoea ananatis in corn seeds on semi-selective medium. Trop Plant Pathol. 43(3): 254–256. https://doi.org/10.1007/s40858-017-0203-z

Mondal KK, Mani C, Singh J, Kim JG, & Mudgett MB. 2011. A new leaf blight of rice caused by Pantoea ananatis in India. Plant Dis. 95(12): 1582. https://doi.org/10.1094/PDIS-06-11-0533

Msimbira LA & Smith DL. 2020. The roles of plant growth promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses. Front. Sustain. Food Syst. 4: 106. https://doi.org/10.3389/fsufs.2020.00106

Nditasari A, Agustiyani D, Noviana Z, Nugroho AA, Purwaningsih S, Dewi TK, Sutisna E, & Antonius S. 2023. Microbial community in garlic plants under different applications of organic fertilizer. IOP Conf. Ser.: Earth Environ. Sci. 1162: 012005. https://doi.org/10.1088/1755-1315/1162/1/012005

Neneng L, Ardianoor A, Usup HLD, Adam C, Zakaria Z, Ghazella A, Perangin-angin SB, & Alvianita V. 2020. Potensi Chlorella sp. dan Pseudomonas sp. dari areal tambang emas sebagai mikroorganisme potensial pereduksi merkuri [Potential of Chlorella sp. and Pseudomonas sp. from gold mining area as potential mercury reducing microorganisms]. Jurnal Ilmu Lingkungan. 18(3): 617–625. https://doi.org/10.14710/jil.18.3.617-625

Nurjanah N, Joko T, & Subandiyah S. 2018. Characterization of Pantoea ananatis isolated from garlic and shallot. Jurnal Perlindungan Tanaman Indonesia. 21(2): 120–126. https://doi.org/10.22146/jpti.27407

Özdo?an DK, Akçelik N, & Akçelik M. 2022. Genetic diversity and characterization of plant growth-promoting effects of bacteria isolated from rhizospheric soils. Curr. Microb. 79(5): 132. https://doi.org/10.1007/s00284-022-02827-3

Panigrahi S & Rath CC. 2021. In vitro characterization of antimicrobial activity of an endophytic bacterium Enterobacter cloacae (MG001451) isolated from Ocimum sanctum. S. Afr. J. Bot. 143: 90–96. https://doi.org/10.1016/j.sajb.2021.07.044

Rahma H, Nurbailis, & Kristina N. 2019. Characterization and potential of plant growth-promoting rhizobacteria on rice seedling growth and the effect on Xanthomonas oryzae pv. Oryzae. Biodiversitas. 20(12): 3654–3661. https://doi.org/10.13057/biodiv/d201226

Ramadhani SI, Prabaningtyas S, Witjoro A, Saptawati RT, & Rodiansyah A. 2020. Quantitative assay of indole acetic acid-producing bacteria isolated from several lakes in East Java, Indonesia. Biodiversitas. 21(11): 5448–5454. https://doi.org/10.13057/biodiv/d211153

Reshma T, Balan S, & Dileep C. 2022. First report of rice grain discolouration and leaf blight caused by Pantoea ananatis in the Kuttanad agro-ecosystem, Kerala, India. Can J Plant Pathol. 45(1): 30–34. https://doi.org/10.1080/07060661.2022.2096697

Sakya AT, Sulandjari, Purnomo J, & Bima DA. 2022. Application of GA3 and PGPRs on growth and antioxidant content of parijoto (Medinilla verrucosa) in peat soil. IOP Conf. Ser. Earth Environ. Sci. 1016: 012009. https://doi.org/10.1088/1755-1315/1016/1/012009

Santoro M, Cappellari L, Giordano W, & Banchio E. 2015. Production of Volatile Organic Compounds in PGPR. In: Cassán FD, Okon Y, & Creus CM. Handbook for Azospirillum. pp. 307–317. https://doi.org/10.1007/978-3-319-06542-7

Setiawati TC, Erwin D, Mandala M, & Hidayatulah A. 2022. Use of Bacillus as a plant growth-promoting rhizobacteria to improve phosphate and potassium availability in acidic and saline soils. in First Asian PGPR Indonesian Chapter International e-Conference 2021, KnE Life Sci: pp. 541–558. https://doi.org/10.18502/kls.v7i3.11160

Pang F, Li Q, Solanki MK, Wang Z, Xing YX, & Dong DF. 2024. Soil phosphorus transformation and plant uptake driven by phosphate-solubilizing microorganisms. Front. Microbiol. 15: 1383813. https://doi.org/10.3389/fmicb.2024.1383813

Sukmadewi DKT, Suharjomo, & Antonius S. 2015. Uji potensi bakteri penghasil hormon IAA (Indole Acetic Acid) dari tanah rhizosfer cengkeh (Syzigium aromaticum L.) [Test of Potential IAA (Indole Acetic Acid) Hormone Producing Bacteria from Rhizosphere Soil Clove (Syzigium aromaticum L.)]. Jurnal Biotropika. 3(2): 91–94.

Suresh P, Varathraju G, Shanmugaiah V, Almaary KS, Elbadawi YB, & Mubarak A. 2021. Partial purification and characterization of 2,4-diacetylphloroglucinol producing Pseudomonas fluorescens VSMKU3054 against bacterial wilt disease of tomato. Saudi J. Biol. Sci. 28(4): 2155–2167. https://doi.org/10.1016/j.sjbs.2021.02.073

Stamenkovi?, S, Beškoski, V, Karabegovi?, I, Lazi?, M, and Nikoli?, N. 2018. Microbial fertilizers: A comprehensive review of current findings and future perspectives. Spanish Journal of Agricultural Research. 16(1): 1–18. https://doi.org/10.5424/sjar/2018161-12117

Sherpa MT, Bag N, Das S, Haokip P, & Sharma L. 2021. Isolation and characterization of plant growth promoting rhizobacteria isolated from organically grown high yielding pole type native pea (Pisum sativum L.) variety Dentami of Sikkim, India. Curr. Res. Microb. Sci. 2: 100068. https://doi.org/10.1016/j.crmicr.2021.100068

Toh WK, Loh PC, & Wong HL. 2019. First Report of leaf blight of rice caused by Pantoea ananatis and Pantoea dispersa in Malaysia. Plant Dis. 103(7): 1764. https://doi.org/10.1094/PDIS-12-18-2299-PDN

Vasseur-Coronado M, Hervé Dupré du Boulois, Ilaria Pertot, & Puopolo G. 2021. Selection of plant growth promoting rhizobacteria sharing suitable features to be commercially developed as biostimulant products. Microbiol. Res. 245: 126672. https://doi.org/10.1016/j.micres.2020.126672

Wong CKF, Teh CY, Vadamalai G, Saidi NB, & Zulperi D. 2020. Development of detached root and leaf assays to evaluate the antagonistic properties of biocontrol agents against Fusarium wilt of banana. Arch. Phytopathol. Pflanzenschutz. 53(9–10): 479–494. https://doi.org/10.1080/03235408.2020.1761222

Wu Y., Zhou J, Li C, & Ma Y. 2019. Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens. MicrobiologyOpen. 8: e813. https://doi.org/10.1002/mbo3.813

Yu L, Yang C, Ji Z, Zeng Y, Liang Y, & Hou Y. 2022. First report of new bacterial leaf blight of rice caused by Pantoea ananatis in Southeast China. Plant Dis. 106(1): 310. https://doi.org/10.1094/PDIS-05-21-0988-PDN

Yuliatin E, Rosadi I, Hariani N, Oktavianingsih L, Fadhlillah L, & Arinda I. 2023. The ecological significance of plant growth promoting rhizobacteria in tropical soil Kalimantan: A narrative review. J. Trop. Life Sci. 13(2): 407–420. https://doi.org/10.11594/jtls.13.02.20

Yuniarti E, Surono, Nurjaya, & Susilowati DN. 2021. The potential of plant growth-promoting microbes from South Kalimantan acid sulfate soil in enhancing the growth of rice plants. IOP Conf. Ser.: Earth Environ. Sci. 648: 012052. https://doi.org/10.1088/1755-1315/648/1/012052

Zhang D, Yu S, Yang Y, Zhang J, Zhao D, Pan Y, Fan S, Yang Z, & Zhu J. 2020. Antifungal effects of volatiles produced by Bacillus subtilis against Alternaria solani in potato. Front. Microbiol. 11: 1196. https://doi.org/10.3389/fmicb.2020.01196