Distribution of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains and their association with different landscape structures in Bali, Indonesia
Main Article Content
Abstract
Spodoptera frugiperda, commonly known as the Fall Armyworm (FAW), is an invasive pest originating from the Americas that poses a serious threat to maize production in Bali, with potential crop losses reaching up to 50%. To monitor its genetic distribution, this study employed molecular identification using the mitochondrial cytochrome oxidase subunit I (mtCOI) and triosephosphate isomerase (Tpi) gene markers. The research aimed to identify FAW strains present in Bali and to assess their distribution across different landscape structures. The study consisted of four main stages: (1) sample and coordinate collection, (2) DNA extraction, amplification, and sequencing, (3) molecular data analysis, and (4) spatial analysis using QGIS, Google Earth Pro, and RStudio 4.3.1 with a generalized linear model (GLM). showed that the COI-R/Tpi-C strain was dominant in the central (Badung and Tabanan) and eastern (Klungkung) regions of Bali, whereas the COI-C/Tpi-C strain was found in the northern (Buleleng), southern (Denpasar), and western (Jembrana) regions. FAW haplotypes were relatively evenly distributed across all sampling locations. No significant association was detected between FAW strain distribution and landscape structure, leaving unclear which vegetation types act as ecological corridors or barriers. The low strain and haplotype diversity observed across both gene markers suggests that genetic variation is largely confined within, rather than between, regions, resulting in a relatively uniform distribution of FAW haplotypes across Indonesia, including Bali.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Akinbuluma MD, van Schaijk RAH, Roessingh P, & Groot AT. 2024. Region-specific variation in the electrophysiological responses of Spodoptera frugiperda (Lepidoptera: Noctuidae) to synthetic sex pheromone compounds. J. Chem Ecol. 50: 631–642. https://doi.org/10.1007/s10886-024-01479-w
Belay DK, Clark PL, Skoda SR, Isenhour DJ, Molina-Ochoa J, Gianni C, & Foster JE. 2012. Spatial genetic variation among Spodoptera frugiperda (Lepidoptera: Noctuidae) sampled from the United States, Puerto Rico, Panama, and Argentina. Ann. Entomol. Soc. Am. 105(2): 359–367. https://doi.org/10.1603/AN11111
Cabusas JVB, Latina RA, & Caoili BL. 2024. Genetic diversity and population structure of the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in the Philippines. J. Appl. Entomol. 148(8): 983–995. https://doi.org/10.1111/jen.13307
Dong Z, Li C, Zhang Q, Li L, Lu Z, Ouyang F, Song Y, Yu Y, & Men X. 2021. Landscape genetic analyses reveal host association of mitochondrial haplotypes in the Asian corn borer, Ostrinia furnacalis. Insect Sci. 28(4): 1169–1178. https://doi.org/10.1111/1744-7917.12798
Durand K, An H, & Nam K. 2024. Invasive fall armyworms are corn strain. Sci. Rep. 14: 5696. https://doi.org/10.1038/s41598-024-56301-0
Fahmi F, Kusumah RYM, & Buchori D. 2023. Genetic variation of pest fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in different landscapes in Bogor. J Entomol Indones. 20(1): 1–9. https://doi.org/10.5994/jei.20.1.1
Ginting S, Chozin M, & Sudjatmiko S. 2024. Infestation of Spodoptera frugiperda on corn in Bengkulu at different elevations. J. Trop. Plant Pests Dis. 24(1): 38–47. https://doi.org/10.23960/jhptt.12438-47
Herlinda S, Suharjo R, Elbi Sinaga M, Fawwazi F, & Suwandi S. 2022. First report of occurrence of corn and rice strains of fall armyworm, Spodoptera frugiperda in South Sumatra, Indonesia and its damage in maize. J. Saudi Soc. Agric. Sci. 21(6): 412–419. https://doi.org/10.1016/j.jssas.2021.11.003
Holderegger R & Wagner HH. 2006. A brief guide to landscape genetics. Landsc Ecol. 21(6): 793–796. https://doi.org/10.1007/s10980-005-6058-6
Holzhauer SIJ, Ekschmitt K, Sander AC, Dauber J, & Wolters V. 2006. Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeseli. Landscape Ecol. 21(6): 891–899. https://doi.org/10.1007/s10980-005-0438-9
Juárez ML, Murúa MG, García MG, Ontivero M, Vera MT, Vilardi JC, Groot AT, Castagnaro AP, Gastaminza G, & Willink E. 2012. Host association of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Argentina, Brazil, and Paraguay. J. Econ. Entomol. 105(2): 573–582. https://doi.org/10.1603/EC11184
Lebody KAE, Salim RG, El-Sayed GM, & Mahmoud SH. 2024. Identification and genetic diversity of Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae) in Egypt. Agronomy. 14(4): 809. https://doi.org/10.3390/agronomy14040809
Lestari P, Swibawa IG, Fitriana Y, Suharjo R, Utomo SD, & Hartaman M. 2024. The population dynamics of Spodoptera frugiperda after its invasion in Lampung Province, Indonesia. J. Trop. Plant Pests Dis. 24(1): 98–108. https://doi.org/10.23960/jhptt.12498-108
Manel S, Schwartz MK, Luikart G, & Taberlet P. 2003. Landscape genetics: Combining landscape ecology and population genetics. Trends Ecol. Evol. 18(4): 189–197. https://doi.org/10.1016/S0169-5347(03)00008-9
Marín DV, Castillo DK, López-Lavalle LAB, Chalarca JR, & Pérez CR. 2021. An optimized high-quality DNA isolation protocol for Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae). MethodsX. 8: 101255. https://doi.org/10.1016/j.mex.2021.101255
McGarigal K & Marks BJ. 1995. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure. Portland. Department of Agriculture, Forest Service, Pacific Northwest Research Station. https://doi.org/10.2737/PNW-GTR-351
Meagher Jr RL, Agboka K, Tounou AK, Koffi D, Agbevohia KA, Amouze TR, Adjévi KM, & Nagoshi RN. 2019. Comparison of pheromone trap design and lures for Spodoptera frugiperda in Togo and genetic characterization of moths caught. Entomol. Exp. Appl. 167(6): 507–516. https://doi.org/10.1111/eea.12795
Monica DC, Kusumah YM, & Winasa IW. Keanekaragaman strain ulat grayak jagung Spodoptera frugiperda (Smith) berdasarkan marker COI dan Tpi dengan kajian kepadatan populasi di Bali [Genetic diversity of fall armyworm Spodoptera frugiperda (Smith) strains based on COI and Tpi markers with population density analysis in Bali]. Jurnal Entomologi Indonesia. 22(1): 41–51. https://doi.org/10.5994/jei.22.1.41
Nagoshi RN. 2010. The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann. Entomol. Soc. Am. 103(2): 283–292. https://doi.org/10.1603/AN09046
Nagoshi RN, Goergen G, Koffi D, Agboka K, Adjevi AKM, Du Plessis H, Van den Berg J, Tepa-Yotto GT, Winsou JK, Meagher RL, & Brévault T. 2022. Genetic studies of fall armyworm indicate a new introduction into Africa and identify limits to its migratory behavior. Sci. Rep. 12: 1941. https://doi.org/10.1038/s41598-022-05781-z
Nagoshi RN, Koffi D, Agboka K, Tounou KA, Banerjee R, Jurat-Fuentes JL, & Meagher RL. 2017. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLoS One. 12(7): e0181982. https://doi.org/10.1371/journal.pone.0181982
Nagoshi RN & Meagher RL. 2022. The Spodoptera frugiperda host strains: What they are and why they matter for understanding and controlling this global agricultural pest. J. Econ. Entomol. 115(6): 1729–1743. https://doi.org/10.1093/jee/toac050
Nagoshi RN, Silvie P, & Meagher RL. 2007. Comparison of haplotype frequencies differentiate fall armyworm (Lepidoptera: Noctuidae) corn-strain populations from Florida and Brazil. J. Econ Entomol. 100(3): 954–961. https://doi.org/10.1603/0022-0493(2007)100[954:COHFDF]2.0.CO;2
Nurkomar I, Trisnawati DW, Fahmi F, & Buchori D. 2023. Survival, development, and fecundity of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) on various host plant species and their implication for pest management. Insects. 14(7): 629. https://doi.org/10.3390/insects14070629
Phillipsen IC, Kirk EH, Bogan MT, Mims MC, Olden JD, & Lytle DA. 2015. Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects. Mol. Ecol. 24(1): 54–69. https://doi.org/10.1111/mec.13003
Sartiami D, Dadang, Harahap IS, Kusumah YM, & Anwar R. 2020. First record of fall armyworm (Spodoptera frugiperda) in Indonesia and its occurence in three provinces. IOP Conf. Ser.: Earth Environ. Sci. 468: 012021. https://doi.org/10.1088/1755-1315/468/1/012021
Sataral M, Amrulloh R, Megasari D, Khoiri S, & Zulfajrin M. 2023. Leveraging environmental and landscape effects on the Spodoptera frugiperda abundance and attack rates’ spatial distribution. Nat. Sci.: J. Sci. Technol. 12(1): 17–28. https://doi.org/10.22487/25411969.2023.v12.i1.16182
Supartha IW, Sunari AAAAS, Krisna IGPB, Yudha IKW, Mahaputra IGF, & Wiradana PA. 2021. Invasion, population development, and attack intensity of the fall armyworm (Spodoptera frugiperda) J.E Smith (Lepidoptera: Noctuidae) on two varieties corn in Serongga Village, Gianyar Regency, Bali-Indonesia. Technol. Rep. Kansai Univ. 63(01): 6945–6954.
Tay WT, Meagher Jr RL, Czepak C, & Groot AT. 2023. Spodoptera frugiperda: Ecology, evolution, and management options of an invasive species. Annu. Rev. Entomol. 68: 299–317. https://doi.org/10.1146/annurev-ento-120220
Yudha IKW, Supartha IW, Susila IW, Sudiarta P, Wijaya IN, & Wiradana PA. 2024. New occurrence of corn and rice strains of Spodoptera frugiperda (Lepidoptera: Noctuidae) in Bali and Lesser Sunda (Indonesia): Genetic diversity, distribution, and damage. Biodiversitas. 25(5): 1890–1900. https://doi.org/10.13057/biodiv/d250505