Analysis of sesame phyllody disease using transmission electron microscopy and intersimple sequence repeat-polymerase chain reaction

Main Article Content

Mayadah A. Haj Ali
Ahmed A. Kheder
Aladdin Hamwieh

Abstract

Sesame phyllody disease caused by phytoplasma has been identified in Egypt as a devastating phytopathogenic mollicute, However, the genetic diversity of phytoplasma infecting sesame plants in Egypt, as revealed by Intersimple Sequence Repeats-Polymerase Chain Reaction (ISSRs-PCR), has not been fully explored. During 2021–2022, sesame plants exhibiting virescence, phyllody, proliferation, and witches’ broom symptoms were observed in various fields across the Faiyoum, Luxor, and Beheira governorates in Egypt. This study aims to identify phytoplasma using transmission electron microscopy (TEM) and ISSRs-PCR. The methodology includes sampling, pathogenicity testing, TEM analysis of ultrathin sections, nested polymerase chain reaction (nested-PCR) targeting the 16S rRNA gene, and clustering analysis using 15 ISSRs primers. Phytoplasma was successfully transmitted to healthy plants through grafting and dodder transmission, with success rates of 80% and 90%, respectively. TEM analysis revealed polymorphic phytoplasma bodies and extensive phloem necrosis. Nested-PCR produced 1250 bp amplicons for all isolates. Phylogenetic analysis showed that the Beheira isolate (“OP185273.1”) is closely related to the peanut WB group. DNA polymorphic fragments ranged from 1 to 10 per profile, with fragment sizes between 150 and 1500 bp. Cluster analysis revealed that only two isolates (Faiyoum and Beheira) clustered together. This study demonstrates the effectiveness of ISSR-PCR in detecting and analyzing phytoplasma infecting sesame plants in Egypt.

Article Details

How to Cite
(1)
Haj Ali, M. A.; Kheder, A. A.; Hamwieh, A. Analysis of Sesame Phyllody Disease Using Transmission Electron Microscopy and Intersimple Sequence Repeat-Polymerase Chain Reaction. J Trop Plant Pests Dis 2025, 25, 84-95.


Section
Articles

References

Akhtar KP, Dickinson M, Sarwar G, Jamil FF, & Haq MA. 2008. First report on the association of a 16SrII phytoplasma with sesame phyllody in Pakistan. Plant Pathol. 57(4): 771–771. https://doi.org/10.1111/j.1365-3059.2008.01872.x

Al-Zadjali AD, Natsuaki T, & Okuda S. 2007. Detection, identification and molecular characterization of a phytoplasma associated with Arabian jasmine (Jasminum sambac L.) witches’ broom in Oman. J. Phytopathol. 155(4): 211–219. https://doi.org/10.1111/j.1439-0434.2007.01219.x

Anilakumar KR, Pal A, Khanum F, & Bawa AS. 2010. Nutritional, Medicinal and Industrial Uses of Sesame (Sesamum indicum L.) Seeds-An Overview. Agric. Conspec. Sci. 75(4): 159–168.

Bedigian D & Harlan JR. 1986. Evidence for cultivation of sesame in the ancient world. Econ. Bot. 40: 137–154. https://doi.org/10.1007/BF02859136

Bertaccini A. 2007. Phytoplasmas: diversity, taxonomy, and epidemiology. Front. Biosci. (Landmark Ed) 12(2): 673–689. https://doi.org/10.2741/2092

Bertaccini A & Duduk B. 2009. Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathol. Mediterr. 48(3): 355–378.

Dehestani A & Tabar SKK. 2007. A rapid efficient method for DNA isolation from plants with high levels of secondary metabolites. Asian J. Plant Sci. 6(6): 977–981. https://doi.org/10.3923/ajps.2007.977.981

Deng S & Hiruki C. 1991. Amplification of 16S rRNA genes from culturable and nonculturable mollicutes. J. Microbiol. Methods. 14(1): 53–61. https://doi.org/10.1016/0167-7012(91)90007-D

Doyle JJ & Doyle JL. 1990. Isolation of plant DNA from fresh tissue. Focus. 12(1): 13–15.

El-Banna O-HM, Kheder AA, & Haj Ali MA. 2024. Detection and molecular characterization of phytoplasma associated with phyllody disease on Dimorphotheca pluvialis in Egypt. Int. J. Phytopathol. 13(01): 85–98. https://doi.org/10.33687/phytopath.013.01.5065

El-Banna O-HM, Kheder AA, Haj Ali MA, Sayed AM, & Haseeb GM. 2020. Biological and molecular characterization of different Egyptian isolates of Spiroplasma citri. Plant Arch. 20(2): 6457–6469.

El-Banna O-HM, Toima NI, Youssef SA, & Shalaby AA. 2015. Molecular and electron microscope evidence for an association of phytoplasma with citrus witches broom disease. IJSER. 6(6): 127–133.

El-Banna O-HM, Mikhail MS, El-Attar AK, & Aljamali AAR. 2013. Molecular and electron microscope evidence for an association of phytoplasma with sesame phyllody in Egypt. Egypt. J. Phytopathol. 41(2): 1–14. https://doi.org/10.21608/ejp.2013.96882

Ellegren H. 2004. Micosatellites: Simple sequences with complex evolution. Nat. Rev. Gen. 5: 435–445. https://doi.org/10.1038/nrg1348

FAO 2022. Sesame Seed Statistics 2022. Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Statistics, United Nations, Rome, Italy. https://www.fao.org/faostat/en/#data/QCL/visualize. 22 November 2022.

Gad SM, Kheder AA, & Awad MA. 2019. Detection and molecular identification of phytoplasma associated with gazania in Egypt. J. Virol. Sci. 6: 12–23.

Haj Ali MA. 2020. Biological, molecular characterization and control of Spiroplasma citri the causal of citrus stubborn disease on lime trees in Egypt. PhD Thesis, Department of Plant Pathology, Faculty of Agriculture, Cairo University, Cairo, Egypt.

Himeno M, Neriya Y, Minato N, Miura C, Sugawara K, Ishii Y, Yamaji Y, Kakizawa S, Oshima K, & Namba S. 2011. Unique morphological changes in plant pathogenic phytoplasma-infected petunia flowers are related to transcriptional regulation of floral homeotic genes in an organ-specific manner. Plant J. 67(6): 971–979. https://doi.org/10.1111/j.1365-313x.2011.04650.x

Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M, Komatsu K, Kagiwada S, Yamaji Y, & Namba S. 2009. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. PNAS. 106(5): 6416–6421. https://doi.org/10.1073/pnas.0813038106

Ikten C, Catal M, Yol E, Ustun R, Furat S, Toker C, & Uzun B. 2014. Molecular identification, characterization and transmission of phytoplasmas associated with sesame phyllody in Turkey. Eur. J. Plant Pathol. 139(1): 217–229.

Khadhair A-H, Tewari JP, Howard RJ, & Paul VH. 2001. Detection of aster yellows phytoplasma in false flax based on PCR and RFLP. Microbiol. Res. 156(2): 179–184. https://doi.org/10.1078/0944-5013-00100

Kim DH, Zur G, Danin-Poleg Y, Lee SW, Shim KB, Kang CW, & Kashi Y. 2002. Genetic relationships of sesame germplasm collection as revealed by inter-simple sequence repeats. Plant Breed. 121(3): 259–262. https://doi.org/10.1046/j.1439-0523.2002.00700.x

Kitazawa Y, Iwabuchi N, Himeno M, Sasano M, Koinuma H, Nijo T, Tomomitsu T, Yoshida T, Okano Y, Yoshikawa N, Maejima K, Oshima K, & Namba S. 2017. Phytoplasma-conserved phyllogen proteins induce phyllody across the Plantae by degrading floral MADS domain proteins. J. Exp. Bot. 68(11): 2799–2811. https://doi.org/10.1093/jxb/erx158

Li ZN, Zhang L, Zhao L & Wu YF. 2012. A new Phytoplasma associated with witches’-broom on Japanese maple in China. Forest Pathol. 42(5): 371–376. https://doi.org/10.1111/j.1439-0329.2012.00769.x

MacLean AM, Sugio A, Makarova OV, Findlay KC, Grieve VM, Tóth R, Nicolaisen M, Hogenhout SA, & Notes A. 2011. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiol. 157(2): 831–841. https://doi.org/10.1104/pp.111.181586

Maejima K, Iwai R, Himeno M, Komatsu K, Kitazawa Y, Fujita N, Ishikawa K, Fukuoka M, Minato N, Yamaji Y, Oshima K, & Namba S. 2014a. Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody. Plant J. 78(4): 541–554. https://doi.org/10.1111/tpj.12495

Maejima K, Oshima K, & Namba S. 2014b. Exploring the phytoplasmas, plant pathogenic bacteria. J. Gen. Plant Pathol. 80: 210–221. https://doi.org/10.1007/s10327-014-0512-8

Nakashima K, Hayashi T, Chaleeprom W, Wongkaew P, & Sirithorn P. 1995. Detection of DNA of phytoplasmas associated with phyllody disease of sesame in Thailand. Jpn. J. Phytopathol. 61(6): 519–528. https://doi.org/10.3186/jjphytopath.61.519

Oshima K, Kakizawa S, Arashida R, Ishii Y, Hoshi A, Hayashi Y, Kagiwada S, & Namba S. 2007. Presence of two glycolytic gene clusters in a severe pathogenic line of Candidatus Phytoplasma asteris. Mol. Plant Pathol. 8(4): 481–489. https://doi.org/10.1111/j.1364-3703.2007.00408.x

Phui SL, Ho WS, Pang SL, & Abdullah J. 2014. Development and polymorphism of simple sequence repeats (SSRs) in Kelampayan (Neolamarckia cadamba-Rubiaceae) using ISSR suppression PCR method. Arch. Appl. Sci. Res. 6(4): 209–218.

Ranebennur H, Rawat K, Rao A, Kumari P, Chalam VC, Meshram N, & Rao GP. 2022. Transmission efficiency of a ‘Candidatus Phytoplasma australasia’ (16SrII-D) related strain associated with sesame phyllody by dodder, grafting and leafhoppers. Europ. J. Plant Pathol. 164: 193–208. https://doi.org/10.1007/s10658-022-02550-6

Madhupriya, Rao GP, Kumar A, & Baranwal VK. 2015. Classification of the sesame phytoplasma strains in India at the 16Sr subgroup level. J. Plant Pathol. 97(3): 523–528.

Rocchetta I, Leonardi PI, Filho GMA, Molina MdCRdM, & Conforti V. 2007. Ultrastructure and X-ray microanalysis of Euglena gracilis (Euglenophyta) under chromium stress. Phycologia. 46(3): 300–306. https://doi.org/10.2216/06-49.1

Salehi M, Esmailzadeh Hosseini SA, Salehi E, & Bertaccini A. 2017. Genetic diversity and vector transmission of phytoplasmas associated with sesame phyllody in Iran. Folia Microbiol. 62: 99–109. https://doi.org/10.1007/s12223-016-0476-5

Salehi M & Izadpanah K. 1992. Etiology and transmission of sesame phyllody in Iran. J. Phytopathol. 135(1): 37–47. https://doi.org/10.1111/j.1439-0434.1992.tb01248.x

Shyu YS & Hwang LS. 2002. Antioxidative activity of the crude extract of lignan glycosides from unroasted Burma black sesame meal. Food Res. Int. 35(4): 357–365. https://doi.org/10.1016/S0963-9969(01)00130-2

Sinclair WA, Griffiths HM, & Davis RE. 1996. Ash yellows and lilac witches’-broom: Phytoplasma diseases of concern in forestry and horticulture. Plant Dis. 80(5): 468–475. https://doi.org/10.1094/PD-80-0468

Sugawara K, Honma Y, Komatsu K, Himeno M, Oshima K, & Namba S. 2013. The alteration of plant morphology by small peptides released from the proteolytic processing of the bacterial peptide TENGU. Plant Physiol. 162(4): 2005–2014. https://doi.org/10.1104/pp.113.218586

Tseng YW, Deng WL, Chang CJ, Huang JW, & Jan FJ. 2014. First report on the association of a 16SrII-A phytoplasma with sesame (Sesamum indicum) exhibiting abnormal stem curling and phyllody in Taiwan. Plant Dis. 98(7): 990. https://doi.org/10.1094/PDIS-12-13-1212-PDN

Uehara T, Tanaka Y, Shiomi T, Namba S, Tsuchizaki T, & Matsuda I. 1999. Histopathological studies on two symptom types of phytoplasma associated with lettuce yellows. Jpn. J. Phytopathol. 65(4): 465–469. https://doi.org/10.3186/jjphytopath.65.465

White DT, Blackall LL, Scott PT, & Walsh KB. 1998. Phylogenetic positions of phytoplasmas associated with dieback, yellow crinkle and mosaic diseases of papaya, and their proposed inclusion in ‘Candidatus Phytoplasma australiense’ and a new taxon, ‘Caldidatus Phytoplasma australasia’. Int. J. Syst. Bacteriol. 48(3): 941–951. https://doi.org/10.1099/00207713-48-3-941

Win NKK, Back CG, & Jung HY. 2010. Phyllody Phytoplasma infecting Sesame (Sesamum indicum) in Myanmar. Trop. Plant Pathol. 35(5): 310–313. https://doi.org/10.1590/S1982-56762010000500006

Yang CY, Huang YH, Lin CP, Lin YY, Hsu HC, Wang CN, Liu LY, Shen BN, & Lin SS. 2015. MicroRNA396-targeted SHORT VEGETATIVE PHASE is required to repress flowering and is related to the development of abnormal flower symptoms by the phyllody symptoms1 effector. Plant Physiol. 168(4): 1702–1716. https://doi.org/10.1104/pp.15.00307