Biology and demographic statistics of the green leafhopper (Nephotettix virescens Distant) as the main vector of tungro virus in tungro-resistant rice varieties

Main Article Content

Rudi Tomson Hutasoit
I Nyoman Widiarta
Muhammad Jihad
Alfonso Sitorus
Susilawati
Mahardika Puspitasari

Abstract

Tungro disease is one of the major constraints to rice production in Indonesia. Although tungro-resistant rice varieties have proven effective in reducing the spread of the virus, it is essential to consider their impact on the development of vector insect populations. This study aims to investigate the biology and demographic characteristics of Nephotettix virescens Distant on various tungro-resistant rice varieties. The research was conducted by maintaining and observing the development of N. virescens on the tungro-resistant varieties Inpari 7, Inpari 8, Inpari 9, Inpari 36, and Inpari 37, as well as the susceptible variety Taichung Native 1 (TN 1), under controlled environmental conditions with regulated temperature and humidity. Development was observed daily until the last individual died. The results indicated that the life cycle, longevity, and lifespan of N. virescens maintained on tungro-resistant varieties differed significantly from those on the susceptible variety TN 1. The life cycle of N. virescens on Inpari 7, Inpari 8, Inpari 9, Inpari 36, and Inpari 37 was 27.57, 30.50, 27.60, 30.80, and 31.64 days, respectively, whereas on the susceptible variety TN 1, it lasted only 24.94 days. Demographic statistical analysis revealed that the net reproductive rate (R?) and intrinsic rate of increase (r) of N. virescens maintained on tungro-resistant varieties were lower than those on the susceptible variety TN 1. Additionally, these tungro-resistant varieties resulted in a longer generation time (T) and doubling time (DT). Consequently, the tungro-resistant varieties negatively affected the vector by prolonging its life cycle, increasing the average generation time (T) and doubling time (DT), and reducing both the net reproductive rate (R?) and the intrinsic rate of increase (r). These five varieties can be considered as options for varietal rotation to suppress the growth of insect vector populations and limit the spread of the tungro virus, especially in tungro-endemic areas.

Article Details

How to Cite
(1)
Hutasoit, R. T.; Widiarta, I. N.; Jihad, M.; Sitorus, A. .; Susilawati, S.; Puspitasari, M. . Biology and Demographic Statistics of the Green Leafhopper (Nephotettix Virescens Distant) As the Main Vector of Tungro Virus in Tungro-Resistant Rice Varieties. J Trop Plant Pests Dis 2025, 25, 96-105.


Section
Articles

References

Anand A, Pinninti M, Tripathi A, Mangrauthia SK, & Sanan-Mishra N. 2022. Coordinated action of RTBV and RTSV proteins suppress host RNA silencing machinery. Microorganisms. 10(2): 197. https://doi.org/10.3390/microorganisms10020197

Auclair JL, Baldos E, & Heinrichs EA. 1982. Biochemical evidence for the feeding sites of the leafhopper, Nephotettix virescens within susceptible and resistant rice plants. Int. J. Trop. Insect Sci. 3: 29–34. https://doi.org/10.1017/S1742758400001855

Azgar MA & Hembram TK. 2018. A Comparative studies on the population dynamic and survival of green leaf hopper and zigzag leaf hopper transmitting rice tungro virus in West Bengal. The Bioscane. 13(2): 607–611.

Awmack CS & Leather SR. 2002. Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol. 47: 817–844. https://doi.org/10.1146/annurev.ento.47.091201.145300

Bhusal K, Sagar GC, & Bhattarai K. 2019. A Review of rice tungro virus in Nepal. J. Plant Sci. Crop Prot. 2(1): 101.

Buresh RJ, Correa Jr TQ, Pabuayon ILB, Laureles EV, & Choi IR. 2021. Yield of irrigated rice affected by asymptomatic disease in a long-term intensive monocropping experiment. Field Crops Res. 265: 108121. https://doi.org/10.1016/j.fcr.2021.108121

BPS. 2023. Berita Resmi Statistik [Official Statistical Report]. https://www.bps.go.id/id/pressrelease/2024/10/15/2376/luas-panen-padi-tahun-2024-diperkirakan-sebesar-10-05-juta-hektare-dengan-produksi-padi-sekitar-52-66-juta-ton-gabah-kering-giling--gkg--.html. Accessed 21 October 2024.

Cruz FCS, Koganezawa H, & Hibino H. 1993. Comparative cytology of rice tungro viruses in selected rice cultivars. J. Phytopathol. 138(4): 274–282. https://doi.org/10.1111/j.1439-0434.1993.tb01387.x

Dey SR. 2016. Green leafhopper (GLH), Nephotettix virescens (Distant) and rice tungro disease (RTD). The Beats Nat. Sci. 3(3–4): 1–7.

Fachrudin. 1980. Bionomi Nephotettix Virescens (Distant) (Homoptera: Cicadellidae: Euscelidae) [Bionomy of Nephotettix virescens (Distant) (Homoptera: Cicadellidae: Euscelidae)]. Dissertation. Institut Pertanian Bogor. Bogor.

Favali MA, Pellegrini S, & Bassi M. 1975. Ultrastructural alterations induced by rice tungro virus in rice leaves. Virology. 66(2): 502–507. https://doi.org/10.1016/0042-6822(75)90222-6

Graham SA & Knight FB. 1967. Principles of Forest Entomology. McGraw-Hill Book Company. New York.

Hibino H, Roechan M, & Sudarisman S. 1978. Association of two types of virus particles with penyakit habang (tungro disease) of rice in Indonesia. Phytopathology. 68: 1412–1416. https://doi.org/10.1094/Phyto-68-1412

Hore TK, Inabangan-asilo MA, Wulandari R, Latif MA, Nihad SAI, Hernandez JE, Gregorio GB, Dalisay TU, Diaz MGQ, Balachiranjeevi Ch, & Swamy BPM. 2022. Introgression of tsv1 improves tungro disease resistance of a rice variety BRRI dhan71. Sci. Rep. 12: 18820. https://doi.org/10.1038/s41598-022-23413-4

Hutasoit RT. 2020a. Bionomi dan statistik demografi wereng hijau (Nephotettix virescens Distant) pada varietas Ciherang dan IR 64 [Bionomy and Demographic Statistics of the Green Planthopper (Nephotettix virescens Distant) on the Ciherang and IR 64 varieties]. In: Dewi P, Widiyaningrum P, Yuniastuti A, Susanti R, Anngraito YU, Rahayuningsih M, Mubarok I, & Christijanti W (Eds.) Prosiding Seminar Nasional Biologi VIII. pp. 88–96. Universitas Negeri Semarang, Semarang.

Hutasoit RT, Kalqutny SH, & Widiarta IN. 2020b. Spatial distribution pattern, bionomic, and demographic parameters of a new invasive species of armyworm Spodoptera frugiperda (Lepidoptera; Noctuidae) in maize of South Sumatra, Indonesia. Biodiversitas. 21(8): 3576–3582. https://doi.org/10.13057/biodiv/d210821

Hutasoit RT, Jihad M, Listihani, & Selangga DGW. 2023. The relationship between vector insect populations, natural enemies, and disease incidence of tungro virus during wet and dry seasons. Biodiversitas. 24(7): 4001–4007. https://doi.org/10.13057/biodiv/d240737

Kim KH, Raymundo AD, & Aikins CM. 2019. Development of a rice tungro epidemiological model for seasonal disease risk management in the Philippines. Eur. J. Agron. 109: 125911. https://doi.org/10.1016/j.eja.2019.04.006

Kim HS, Heinrichs EA, & Rapusas HR. 1986. Levels of resistance of rice cultivars and the weed Leersia hexandra L. to Nephotettix malayanus Ishihara et Kawase and N. virescens (Distant). Crop Prot. 5(6): 400–405. https://doi.org/10.1016/0261-2194(86)90072-4

Kobayashi N, Ikeda R, Dominggo IT, & Vaughan DA. 1993. Resistance to infection of rice tungro viruses and vector resistance in wild species of rice (Oryza spp.). Jap. J. Breed. 43(3): 377–387. https://doi.org/10.1270/jsbbs1951.43.377

Koussoroplis AM & Wacker A. 2016. Covariance modulates the effect of joint temperature and food variance on ectotherm life-history traits. Ecol. Lett. 19(2): 143–152. https://doi.org/10.1111/ele.12546

Kumam Y, Rajadurai G, Kumar KK, Varanavasiappan S, Reddy MK, Krishnaveni D, Mangrauthia SK, Raveendran M, Arul L, Kokiladevi E, & Sudhakar D. 2022. Genome editing of indica rice ASD16 for imparting resistance against rice tungro disease. J. Plant Biochem Biotechnol. 31(4): 880–893. https://doi.org/10.1007/s13562-021-00765-y

Kumar G & Dasgupta I. 2021. The titers of rice tungro bacilliform virus dictate the expression levels of genes related to cell wall dynamics in rice plants affected by tungro disease. Arch. Virol. 166: 1325–1336. https://doi.org/10.1007/s00705-021-05006-0

Kumar V, Singh H, Kumar S, Kumar S, & Gautam MP. 2020. Age specific life table of rice brown plant hopper, Nilaparvata lugens Stal. on Pusa Basamati-1 and Pant Dhan-12 under natural condition. J. Exp. Zool. India. 23(1): 159–163.

Maharani Y, Puspitaningrum D, Istifadah N, Hidayat S, & Ismail A. 2021. Biology and life table of fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) on maize and rice. Serangga. 26(4): 161–174.

Marlena L. 2014. Optimasi ukuran subcontoh melalui bootstrap dan jackknife untuk pendugaan statistik demografi hama Aphis glycines. [Optimization Subsample Size by Bootstrap and Jackknife to Estimate Demographic Statistic of Pest Aphis glycines]. Skripsi. Institut Pertanian Bogor. Bogor.

McCormick AC, Arrigo L, Eggenberger H, Mescher MC, & De Moraes CM. 2019. Divergent behavioural responses of gypsy moth (Lymantria dispar) caterpillars from three different subspecies to potential host trees. Sci. Rep. 9: 8953. https://doi.org/10.1038/s41598-019-45201-3

Naranjo SE & Ellsworth PC. 2017. Methodology for developing life tables for sessile insects in the field using the whitefly, Bemisia tabaci, in cotton as a model system. J. Vis. Exp. 129: e56150. https://doi.org/10.3791/56150

Ng JCK & Zhou JS. 2015. Insect vector-plant virus interactions associated with non-circulative, semi-persistent transmission: current perspectives and future challenges. COVIRO. 15: 48–55. https://doi.org/10.1016/j.coviro.2015.07.006

Patel LC. 2022. Efficacy of some insecticides against green leaf hopper, Nephotettix virescens Distant (Hemiptera: Cicadellidae) and brown plant hopper, Nilaparvata lugens Stal (Hemiptera: Delphacidae) in rice with safety to natural enemies. J. Entomol. Res. 46(4): 780–788. https://doi.org/10.5958/0974-4576.2022.00134.7

Pinto JRL, Torres AF, Truzi CC, Vieira NF, Vacari AM, & De Bortoli SA. 2019. Artificial corn-based diet for rearing Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Insect Sci. 19(4): 1–8. https://doi.org/10.1093/jisesa/iez052

Price PW. 1997. Insect Ecology. Third Edition. John Wiley and Sons. New York.

Rahayu S, Hannum S, Cristin L, & Tampubolon DM. 2024. Detection of Rice tungro bacilliform virus (RTBV) causes of tungro disease in rice plant (Oryza sativa L.) in Langkat, North Sumatera using PCR (Polymerase Chain Reaction) technique. IOP Conf. Ser.: Earth Environ. Sci. 1352: 012043. https://doi.org/10.1088/1755-1315/1352/1/012043

Rashid MM, Jahan M, & Islam KS. 2015. Response of adult brown planthopper Nilaparvata lugens (Stål) to rice nutrient management. Neotrop. Entomol. 45: 588–596. https://doi.org/10.1007/s13744-016-0401-2

Rosida N, Komalasari E, & Praptana RH. 2020. Preference test of green leaf hopper (Nephotettix virescens Distant) to some tungro-resistant promising lines. Agric. 3(2): 105–120. https://doi.org/10.24246/agric.2020.v32.i2.p105-120

Ruimassa RMR, Holle Y, & Manzila I. 2023. Endogenous like sequence Rice tungro bacilliform virus (RTBV) fragments in the local rice genome and its role in controlling tungro disease. IOP Conf. Ser.: Earth Environ. Sci. 1192: 012018. https://doi.org/10.1088/1755-1315/1192/1/012018

Sharma KR, Raju SVS, Meena RS, Babu SR, & Singla S. 2021. Weather based prediction model for green leafhopper (GLH), Nephotettix virescens distant of rice in middle gangetic plains. J. Entomol. Res. 45(4): 675–678. http://dx.doi.org/10.5958/0974-4576.2021.00106.7

Singh R, Sohi AS, & Shukla KK. 2010. Multiplication and development of Nephotettix virescens (Distant) (Hemiptera: Cicadellidae) on different cultivars of rice. Indian J. Ecol. 37(1): 86–88.

Southwood TRE & Henderson PA. 2000. Ecological Method. Third Edition. Blackwell Science. Oxford.

Srilatha P, Yousuf F, Methre R, Vishnukiran T, Agarwal S, Poli Y, Reddy MR, Vidyasagar B, Shanker C, Krishnaveni D, Triveni S, Brajendra, Praveen S, Balachandran SM, Subrahmanyam D, & Mangrauthia SK. 2019. Physical interaction of RTBV ORFI with D1 protein of Oryza sativa and Fe/Zn homeostasis play a key role in symptoms development during rice tungro disease to facilitate the insect mediated virus transmission. Virology. 526: 117–124. https://doi.org/10.1016/j.virol.2018.10.012

Sutrawati M, Ganefianti DW, Sipriyadi S, Wibowo RH, Agustin Z, Listihani, & Selangga DGW. 2021. Disease incidence and molecular diversity of Tungro virus on rice (Oryza sativa) in Bengkulu, Indonesia. IJAT. 17(5): 1973–1984.

Valle RR, Nakasuji F, & Kuno E. 1986. A comparative study of the different bionomic and demographic parameters of four green leafhoppers, Nephotettix spp. (Homoptera: Cicadellidae). Appl. Entomol. Zool. 21(2): 313–321. https://doi.org/10.1303/aez.21.313

Vijaykumar L, Chakravarthy AK, Patil SU, & Rajanna D. 2009. Resistance mechanism in rice to the midge Orseolia oryzae (Diptera: Cecidomyiidae). J. Econ. Entomol. 102(4): 1628–1638. http://dx.doi.org/10.1603/029.102.0430

Widiarta IN & Kusdiaman D. 2008. Pengaruh sublethal ekstrak sambilata (Andrographis paniculata Nees) terhadap aktivitas musuh alami dan keperidian wereng hijau. J Trop Plant Pests Dis. 8(2): 75–81. https://doi.org/10.23960/j.hptt.2875-81

Widiarta IN & Pakki S. 2015. Variasi virulensi virus tungro dari inokulum di daerah endemik tungro di Indonesia. J Trop Plant Pests Dis. 15(1): 1–9. https://doi.org/10.23960/j.hptt.1151-9

Yesuraja I & Mariappan V. 1993. Biochemical differences in the rice varieties susceptible and resistant to rice tungro virus. Madras Agric. J. 80(9): 486–490. https://doi.org/10.29321/MAJ.10.A01687

Zheng XM, Tao YL, Chi H, Wan FH, & Chu D. 2017. Adaptability of small brown planthopper to four rice cultivars using life table and populaion projection method. Sci. Rep. 7: 42399. https://doi.org/10.1038/srep42399