Diversity and community structure of predators in surjan (polyculture) and lembaran (monoculture) paddy fields
Main Article Content
Abstract
Predator diversity decreases because of low ecosystem quality in modern agriculture that applies monoculture systems. However, polyculture systems in paddy fields can improve biodiversity, including pests, natural enemies, and microorganisms. Surjan is a local polyculture farming practice that originated in Yogyakarta. This farming practice consists of raised beds for cultivating palawija or horticultural crops and sunken beds for rice cultivation. Surjan farming may have an impact on predatory diversity and abundance, although this has not been studied. To address this issue, research was carried out to investigate the diversity, abundance, and structure of the community of predators in the paddy fields of surjan (polyculture) and lembaran (monoculture). The field experiment was conducted in three pairs, surjan and lembaran, in Panjatan District, Kulon Progo Regency, Yogyakarta Special Region, Indonesia. In each field, five random plots arranged in a cross pattern were used to collect a sample of predators. Several traps, including sweeping, pitfall traps, yellow adhesive traps, and yellow pan traps, were used to determine the abundance and diversity of predators. Results showed that species diversity, abundance, species composition, and biodiversity index in surjan farming were significantly improved compared to lembaran farming. Ceratopogonidae and Formicidae were the most abundant families in both surjan and lembaran farming, although they are more abundant in surjan. It can be concluded from the study that surjan farming could improve ecosystem quality by implementing predators for pest management.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Adamczewska-Sowi?ska K & Sowi?ski J. 2020. Polyculture management: A crucial system for sustainable agriculture development. In: Meena R (Ed.). Soil Health Restoration and Management. pp. 279–319. Springer, Singapore. https://doi.org/10.1007/978-981-13-8570-4_8
Adler PH & Courtney GW. 2019. Ecological and societal services of aquatic Diptera. Insects. 10(3): 70. https://doi.org/10.3390/insects10030070
Aminatun T, Widyastuti SH, & Djuwanto D. 2014. Pola kearifan masyarakat lokal dalam sistem sawah surjan untuk konservasi ekosistem pertanian [Local community wisdom patterns in the surjan rice field system for agricultural ecosystem conservation]. Jurnal Penelitian Humaniora. 19(1): 65–76. https://doi.org/10.21831/hum.v19i1.3521
Andrén O & Kätterer T. 2008. Agriculture systems. In: Jørgensen SE & Fath BD (Eds.). Encyclopedia of Ecology. Vol. 1. pp. 96–101. Academic Press, Oxford, UK. https://doi.org/10.1016/B978-008045405-4.00313-X
Beckmann M, Gerstner K, Akin?Fajiye M, Ceau?u S, Kambach S, Kinlock NL, Phillips HRP, Verhagen W, Gurevitch J, Klotz S, Newbold T, Verburg PH, Winter M, & Seppelt R. 2019. Conventional land-use intensification reduces species richness and increases production: A global meta-analysis. Glob. Change Biol. 25(6): 1941–1956. https://doi.org/10.1111/gcb.14606
Beillouin D, Ben?Ari T, Malézieux E, Seufert V, & Makowski D. 2021. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Change Biol. 27(19): 4697–4710. https://doi.org/10.1111/gcb.15747
Biondi A, Zappalà L, Di Mauro A, Garzia GT, Russo A, Desneux N, & Siscaro G. 2016. Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis?. BioControl. 61: 79–90. https://doi.org/10.1007/s10526-015-9700-5
Borkent A & Brown BV. 2015. How to inventory tropical flies (Diptera)—One of the megadiverse orders of insects. Zootaxa. 3949(3): 301–322. https://doi.org/10.11646/zootaxa.3949.3.1
BPS. 2021. Luas Sawah Irigasi dan Sawah Tadah Hujan Menurut Kecamatan di Kabupaten Kulon Progo [Area of Irrigated Rice Fields and Rainfed Rice Fields by District in Kulon Progo Regency]. https://kulonprogokab.bps.go.id/indicator/154/482/1/luas-sawah-irigasi-dan-sawah-tadah-hujan-menurut-kecamatan-di-kabupaten-kulon-progo.html. Accessed 20 July 2023.
Castagneyrol B, Jactel H, Vacher C, Brockerhoff EG, & Koricheva J. 2014. Effects of plant phylogenetic diversity on herbivory depend on herbivore specialization. J. Appl. Ecol. 51(1): 134–141. https://doi.org/10.1111/1365-2664.12175
Coco AM, Yip EC, Kaplan I, & Tooker JF. 2022. More phylogenetically diverse polycultures inconsistently suppress insect herbivore populations. Oecologia. 198: 1057–1072. https://doi.org/10.1007/s00442-022-05153-4
Cuervo QLG, del-Val E, Macçias-Ordóñez R, Dátillo W, & Negrete-Yankelevich S. 2023. Spider guilds in a maize polyculture respond differently to crop diversification, landscape composition and stage of the agricultural cycle. Landscape Composition and Stage of the Agricultural Cycle. https://doi.org/10.2139/ssrn.4462390
Ebeling A, Hines J, Hertzog LR, Lange M, Meyer ST, Simons NK, & Weisser WW. 2018. Plant diversity effects on arthropods and arthropod-dependent ecosystem functions in a biodiversity experiment. Basic. Appl. Ecol. 26: 50–63. https://doi.org/10.1016/j.baae.2017.09.014
Farooq MO, Razaq M, & Shah FM. 2022. Plant diversity promotes species richness and community stability of arthropods in organic farming. Arthropod Plant Interact. 16: 593–606. https://doi.org/10.1007/s11829-022-09920-1
Fedor P & Zvaríková M. 2019. Biodiversity indices. In: Fath B (Ed.). Encyclopedia of Ecology. Second Edition. pp. 337–346. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10558-5
Folgarait PJ. 1998. Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers. Conserv. 7: 1221–1244. https://doi.org/10.1023/A:1008891901953
Greenop A, Woodcock BA, Wilby A, Cook SM, & Pywell RF. 2018. Functional diversity positively affects prey suppression by invertebrate predators: a meta-analysis. Ecology. 99(8): 1771–1782. https://doi.org/10.1002/ecy.2378
Gregorius HR & Gillet EM. 2022. The concept of evenness/unevenness: less evenness or more unevenness?. Acta Biotheoretica. 70(3): 1–28. https://doi.org/10.1007/s10441-021-09429-9
Guo PF, Wang MQ, Orr M, Li Y, Chen JT, Zhou QS, Staab M, Fornoff F, Chen GH, & Zhang NL, Klein AM, & Zhu CD. 2021. Tree diversity promotes predatory wasps and parasitoids but not pollinator bees in a subtropical experimental forest. Basic Appl. Ecol. 53: 134–142. https://doi.org/10.1016/j.baae.2021.03.007
Hadi M & Aminah A. 2012. Keragaman serangga dan perannya di ekosistem sawah [Insect diversity and its role in wetland ecosystems]. Jurnal Sains dan Matematika. 20(3): 54–57.
Herdiawan WS, Nurkomar I, & Trisnawati DW. 2021. Biodiversity of detritivores, pollinators, and neutral insects on Surjan and conventional rice field ecosystems. Proceedings of the 4th International Conference on Sustainable Innovation 2020–Technology, Engineering and Agriculture (ICoSITEA 2020). pp. 267–272. https://doi.org/10.2991/aer.k.210204.048
Isbell F, Adler PR, Eisenhauer N, Fornara D, Kimmel K, Kremen C, Letourneau DK, Liebman M, Polley HW, Quijas S, & Scherer-Lorenzen M. 2017. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 105(4): 871–879. https://doi.org/10.1111/1365-2745.12789
Iverson AL, Marín LE, Ennis KK, Gonthier DJ, Connor-Barrie BT, Remfert JL, Cardinale BJ, & Perfecto I. 2014. Do polycultures promote win?wins or trade-offs in agricultural ecosystem services? A meta-analysis. J. Appl. Ecol. 51(6): 1593–1602. https://doi.org/10.1111/1365-2664.12334
Kalshoven, LGE. 1981. The Pests of Crops in Indonesia. Revised and translated by PA Van Der Laan, University of Amsterdam, with the assistance of GHL Rothschild. CSIRO, Canberra. Ichtiar Baru van Hoeve, Jakarta.
Kurniawati N. 2015. Keragaman dan kelimpahan musuh alami hama pada habitat padi yang dimanipulasi dengan tumbuhan berbunga [diversity and abundance of natural enemy of pest at manipulated rice habitat using flowering plant]. Ilmu Pertanian (Agricultural Science). 18(1): 31–36. https://doi.org/10.22146/ipas.6175
Luo Y, Fu H, & Traore S. 2014. Biodiversity conservation in rice paddies in China: toward ecological sustainability. Sustainability. 6(9): 6107–6124. https://doi.org/10.3390/su6096107
Marshall MC, Binderup AJ, Zandonà E, Goutte S, Bassar RD, El-Sabaawi RW, Thomas SA, Flecker AS, Kilham SS, Reznick DN, & Pringle CM. 2012. Effects of consumer interactions on benthic resources and ecosystem processes in a Neotropical stream. PLos One. 7(9): e45230. https://doi.org/10.1371/journal.pone.0045230
Martin AE, Collins SJ, Crowe S, Girard J, Naujokaitis-Lewis I, Smith AC, Lindsay K, Mitchell S, & Fahrig L. 2020. Effects of farmland heterogeneity on biodiversity are similar to-or even larger than-the effects of farming practices. Agric. Ecos. Environ. 288: 106698. https://doi.org/10.1016/j.agee.2019.106698
Marwasta D & Priyono KD. 2007. Analisis karakteristik permukiman desa-desa pesisir di Kabupaten Kulonprogo [Analysis of the characteristics of coastal villages in Kulonprogo Regency]. Forum Geografi. 21(1): 57–68. https://doi.org/10.23917/forgeo.v21i1.1819
McGavin GC. 2010. Insect. Dorling Kindersley Limited. London, England, UK.
Mortuja MG, Chaube MK, & Kumar S. 2021. Dynamic analysis of a predator-prey system with nonlinear prey harvesting and square root functional response. Chaos, Soliton Fract. 148: 111071. https://doi.org/10.1016/j.chaos.2021.111071
Nurkomar I, Trisnawati DW, Azhar A, Saputra JA, & Prayoga AD. 2023. Biodiversity of Insects Parasitoid and Predator in Cassava Agroecosystem in Indonesia. Proc Zool Soc. 76: 49–54. https://doi.org/10.1007/s12595-023-00465-6
Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, & Suggests M. 2007. The vegan package. Community ecology package, 719(10): 631–637.
Ortiz-Burgos S. 2016. Shannon-Weaver Diversity Index. In: Kennish MJ (Ed,). Encyclopedia of Estuaries. pp. 572–573. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/https://doi.org/10.1007/978-94-017-8801-4_233
Pemerintahan Kabupaten Kulon Progo. 2022. Penyusunan Rencana Tata Tanam [Planting Management Plans]. https://dpu.kulonprogokab.go.id/detil/726/penyusunan-rencana-tata-tanam. Accessed 10 July 2023.
Raunio J, Heino J, & Paasivirta L. 2011. Non-biting midges in biodiversity conservation and environmental assessment: findings from boreal freshwater ecosystems. Ecological Indicators. 11(5): 1057–1064. https://doi.org/10.1016/j.ecolind.2010.12.002
R-Core-Team. 2023. R: A Language and Environment for Statistical Computing [Computer Software]. R Foundation for Statistical Computing. Vienna.
Roeder KA & Harmon-Threatt AN. 2022. Woody perennial polycultures increase ant diversity and ant-mediated ecosystem services compared to conventional corn-soybean rotations. Agric., Ecosys. & Environ. 336: 108025. https://doi.org/10.1016/j.agee.2022.108025
Schuldt A, Ebeling A, Kunz M, Staab M, Guimarães-Steinicke C, Bachmann D, Buchmann N, Durka W, Fichtner A, Fornoff, F, Härdtle W, Hertzog LR, Klein AM, Roscher C, Schller J, Oheimb GV, Weigelt A, Weisser W, Wirth C, Zhang J, Bruelheide H, & Eisenhauer N. 2019. Multiple plant diversity components drive consumer communities across ecosystems. Nat. Commun. 10: 1460. https://doi.org/10.1038/s41467-019-09448-8
Shepard BM, Barrion AT, & Litsinger JA. 1987. Friends of the rice farmer. Helpful insects, spiders and pathogens. International Rice Research Institute, Manila, Philippines.
Staab M, & Schuldt A. 2020. The influence of tree diversity on natural enemies-a review of the “enemies” hypothesis in forests. Curr Forestry Rep. 6: 243–259. https://doi.org/10.1007/s40725-020-00123-6
Stemmelen A, Jactel H, Brockerhoff E, & Castagneyrol B. 2022. Meta-analysis of tree diversity effects on the abundance, diversity and activity of herbivores’ enemies. Basic Appl. Ecol. 58: 130–138. https://doi.org/10.1016/j.baae.2021.12.003
Straub CS, Simasek NP, Dohm R, Gapinski MR, Aikens EO, & Nagy C. 2014. Plant diversity increases herbivore movement and vulnerability to predation. Basic Appl. Ecol. 15(1): 50–58. https://doi.org/10.1016/j.baae.2013.12.004
Susilawati A, & Nursyamsi D. 2014. Sistem Surjan: Kearifan lokal petani lahan pasang surut dalam mengantisipasi perubahan iklim [Surjan system: Local knowledge of tidal swampland farmers to anticipate climate change]. Jurnal Sumberdaya Lahan. 8(1): 31–42.
Thomine E, Jeavons E, Rusch A, Bearez P, & Desneux N. 2020. Effect of crop diversity on predation activity and population dynamics of the mirid predator Nesidiocoris tenuis. J. Pest Sci. 93: 1255–1265. https://doi.org/10.1007/s10340-020-01222-w
Tiwari PK, Verma M, Pal S, Kang Y, & Misra AK. 2021. A delay nonautonomous predator–prey model for the effects of fear, refuge and hunting cooperation. J. Biol. Syst. 29(4): 927–969. https://doi.org/10.1142/S0218339021500236
Tooker JF, O’Neal ME, & Rodriguez-Saona C. 2020. Balancing disturbance and conservation in agroecosystems to improve biological control. Annu. Rev. Entomol. 65: 81–100. https://doi.org/10.1146/annurev-ento-011019-025143
Triplehorn CA, & Johnson NF. 2005. Borror and DeLong’s Introduction to the Study of Insects. Thomson Brooks/Cole, Belmont, CA.
Trisnawati DW, Fadilah M, & Nurkomar I. 2022a. diversity and composition of Arthropods natural enemies in integrated rice fish farming system (Minna padi) and its functions in agroecosystems. IOP Conf. Ser.: Earth Environ. Sci. 985: 012047. https://doi.org/10.1088/1755-1315/985/1/012047
Trisnawati DW, Nurkomar I, Ananda LK, & Buchori D. 2022b. Agroecosystem complexity of Surjan and Lembaran as local farming systems effects on biodiversity of pest insects. Biodiversitas. 23(7): 3613–3618. https://doi.org/10.13057/biodiv/d230738
Zuur AF, Ieno EN, Walker NJ, Saveliev AA, & Smith GM. 2009. Mixed Effects Models and Extensions in Ecology with R. Springer.