Genetic structure analysis of several peroral infectivity factor gene in Spodoptera litura Nucleopolyhedrovirus
Main Article Content
Abstract
Spodoptera litura Nucleopolyhedrovirus (SpltNPV) is an entomopathogenic virus from the Baculoviridae family, currently under development as a biological control agent for cutworm Spodoptera litura. The NPV’s ability to infect its pest host can be determined by expression of pif protein complex by pif gene. The research aims to acquire genetic character information of the pif gene of SpltNPV from Bogor. Amplification of the NPV gene was carried out using the specific primers to amplifies two types of pif gene. The PCR products were sequenced then the DNA sequences were analyzed with the BioEdit and BLAST programs. The PCR amplification results showed that the size of the sample DNA fragment was 900 bp, 1300 bp and 710 bp. Based on the sequence analysis results, SpltNPV isolates from Bogor are closely related to SpltNPV and SpliNPV isolates from China. The highest nucleotide homology values of Pif-1, Pif-2, and Pif-3 gene were 99.56%, 99.37% and 100%, respectively. Based on the results of phylogenetic analysis, HearNPV isolates from Bogor belong to the same group as the NPVs that infect the species Spodoptera litura and closely related to NPV that infect Spodoptera littoralis. The amino acid sequence analysis showed the number of mutated sites in pif-1, pif-2, and pif-3 in this study are 1, 3, and 0, respectively, which indicates that protein mutation in SpltNPV Bogor did not significantly alter the viral infection process.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Ali G, Vlak JM, & van der Werf W. 2018. Biological activity of Pakistani isolate SpltNPV-Pak-BNG in second, third and fourth instar larvae of the leafworm Spodoptera litura. Biocontrol Sci. Technol. 28(5): 521–527. https://doi.org/10.1080/09583157.2018.1461197
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215(3): 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Bedjo B. 2017. The potential of various isolates of Spodoptera litura Nuclear Polyhedrosis Viruses from East Java (Indonesia) to control Spodoptera litura on soybean. Biodiversitas J. Biol. Div. 18(2): 582–588. https://doi.org/10.13057/biodiv/d180219
Boogaard B, van Lent JWM, Theilmann DA, Erlandson MA, & van Oers MM. 2017. Baculoviruses require an intact ODV entry-complex to resist proteolytic degradation of per os infectivity factors by co-occluded proteases from the larval host. J. Gen. Virol. 98(12): 3101–3110. https://doi.org/10.1099/jgv.0.000974
Boogaard B, Van Oers MM, & Van Lent JWM. 2018. An advanced view on Baculovirus per Os Infectivity Factors. Insect. 9(3): 84. https://doi.org/10.3390/insects9030084
Boogaard B, Van Oers MM, & Van Lent JWM. 2020. Baculovirus per os infectivity factors-a complex matter. Doctoral thesis. Wageningen University. Wageningen. https://doi.org/10.18174/506926
Braunagel SC, Williamson ST, Saksena S, Zhong Z, Russell WK, Russell DH, & Summers MD. 2004. Trafficking of ODV-E66 is mediated via a sorting motif and other viral proteins: Facilitated trafficking to the inner nuclear membrane. PNAS. 101(22): 8372–8377. https://doi.org/10.1073/pnas.0402727101
Burke GR, Thomas SA, Eum JH, & Strand MR. 2013. Mutualistic polydnaviruses share essential replication gene functions with pathogenic ancestors. PLoS Pathog. 9(5): e1003348. https://doi.org/10.1371/journal.ppat.1003348
Claus JD, Gioria VV, Micheloud GA, & Visnovsky G. 2012. Production of insecticidal Baculoviruses in insect cell cultures: Potential and limitations In: Soloneski S & Larramendy M (Eds.). Insecticides—Basic and Other Applications. pp. 127-152. InTech. Croatia.
Cuartas-Otálora PE, Gómez-Valderrama JA, Ramos AE, Barrera-Cubillos GP, & Villamizar-Rivero LF. 2019. Bio-Insecticidal potential of Nucleopolyhedrovirus and Granulovirus mixtures to control the fall armyworm Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae). Viruses. 11(8): 684. https://doi.org/10.3390/v11080684
Das RH & Durga PY. 1996. Restriction endonuclease analysis of the Spodoptera litura nucleopolyhedrovirus (NPV) isolate. Biochem. Mol. Biol. Int. 39(1): 1–11. https://doi.org/10.1080/15216549600201001
Doud MB, Ashenberg O, & Bloom JD. 2015. Site-specific amino acid preferences are mostly conserved in two closely related protein homologs. Mol. Biol. Evol. 32(11): 2944–2960. https://doi.org/10.1093/molbev/msv167
Doyle JJ & Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin. 19: 11–15.
Federici BA. 1997. Baculovirus Pathogenesis. In: Miller LK (Ed.). The Baculoviruses. pp. 33–59. Springer. New York. https://doi.org/10.1007/978-1-4899-1834-5
Haas-Stapleton EJ, Washburn JO, & Volkman LE. 2004. P74 mediates specific binding of Autographa californica M nucleopolyhedrovirus occlusion-derived virus to primary cellular targets in the midgut epithelia of Heliothis virescens larvae. J. Virol. 78(13): 6786–6791. https://doi.org/10.1128/JVI.78.13.6786-6791.2004
Hall TA. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–98.
Horton HM & Burand JP. 1993. Saturable attachment sites for polyhedron-derived baculovirus on insect cells and evidence for entry via direct membrane fusion. J. Virol. 67(4): 1860–1868. https://doi.org/10.1128/JVI.67.4.1860-1868.1993
Kusumah YM, Ilhami MAW, & Kurniawati F. 2023. Molecular characterization of Spodoptera litura Nucleopolyhedrovirus (SpltNPV) from Bogor using the late expression factor-8 gene. IOP Conf. Ser.: Earth Environ. Sci. 1133: 012039. https://doi.org/10.1088/1755-1315/1133/1/012039
King AMQ, Adams MJ, Carstens EB, & Lefkowitz EJ. 2012. Family-Baculoviridae. In: Virus Taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses. pp. 163–173. Elsevier Academic Press. San Diego.
Kusumah RYM, Hartanto T, & Kurniawati F. 2022. Identifikasi berbasis karakter molekuler Nucleopolyhedrovirus pada larva Helicoverpa armigera Hubner (Lepidoptera: Noctuidae) asal Bogor, Jawa Barat [Identification based on molecular character of Nucleopolyhedrovirusin Helicoverpa armigera Hubner (Lepidoptera: Noctuidae) larvae from Bogor, West Java]. Jurnal Entomologi Indonesia. 19(2): 127–134. https://doi.org/10.5994/jei.19.2.127
Liao L, Hou D, Huang H, Wang M, Deng F, Wang H, Hu Z, & Zhang T. 2013. Identification of the epitopes of monoclonal antibodies against P74 of Helicoverpa armigera Nucleopolyhedrovirus. Virol. Sin. 28: 360–367. https://doi.org/10.1007/s12250-013-3393-7
Makalliwa GA, Wang X, Zhang H, Zhang N, Chen C, Li J, Deng F, Wang H, Wang M, & Hu Z. 2018. HearNPV pseudotyped with PIF1, 2, and 3 from MabrNPV: infectivity and complex stability. Virol Sin. 33: 187–196. https://doi.org/10.1007/s12250-018-0014-5
Miele SAB, Garavaglia MJ, Belaich MN, & Ghiringhelli PD. 2011. Baculovirus: Molecular insights on their diversity and conservation. Int. J. Evol. Biol. 2011. https://doi.org/10.4061/2011/379424
Mitsuhashi W. 2009. Insect virus proteins involved in the peroral infectivity of the viruses and their potential practical application in pest control. In: Connell CI & Ralston DP (Eds.). Insect Viruses: Detection, Characterization and Roles. pp. 1–20, Nova Science Publishers. New York.
Moscardi F, de Souza LM, de Castro Batista MEB, Lara Moscardi M, & Szewczyk B. 2011. Baculovirus pesticides: Present state and future perspectives. In: Ahmad I, Ahmad F, & Pichtel J. Microbes and Microbial Technology. pp. 415–445. Springer. New York. https://doi.org/10.1007/978-1-4419-7931-5_16
Mu J, van Lent JWM, Smagghe G, Wang Y, Chen X, Vlak JM, & van Oers MM. 2014. Live imaging of baculovirus infection of midgut epithelium cells: A functional assay of per os infectivity factors. J. Gen. Virol. 95(11): 2531–2539. https://doi.org/10.1099/vir.0.068262-0
Nayak DP. 2007. Virus Morphology, Replication, and Assembly. In: Hurst CJ (Ed.). Viral Ecology. pp. 63–124. Academic Press. San Diego. https://doi.org/10.1016/B978-012362675-2/50004-5
Ohkawa T, Washburn JO, Sitapara R, Sid E, & Volkman LE. 2005. Specific binding of Autographa californica M Nucleopolyhedrovirus occlusion-derived virus to midgut cells of Heliothis virescens larvae is mediated by products of pif genes Ac119 and Ac022 but not by Ac115. J Virol. 79(24): 15258–15264. https://doi.org/10.1128/jvi.79.24.15258-15264.2005
Rodgers PB. 1993. Potential of biopesticides in agriculture. Pest Manag. Sci. 39(2): 117–129. https://doi.org/10.1002/ps.2780390205
Singh P & Moore RF. 1985. Hand Book of Insect Rearing Vol II. Elvesier Science Publishing Company Inc. New York.
Slack J & Arif BM. 2006. The baculoviruses occlusion?derived virus: Virion structure and function. Adv. Virus Res. 69: 99–165. https://doi.org/10.1016/s0065-3527(06)69003-9
Sun X. 2015. History and current status of development and use of viral insecticides in China. Viruses. 7(1): 306–319. https://doi.org/10.3390/v7010306
Tamura K, Stecher G, & Kumar S. 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38(7): 3022–3027. https://doi.org/10.1093/molbev/msab120
Harrison R & Hoover K. 2012. Baculoviruses and other occluded insect viruses. In: Vega FE In: Vega FE & Kaya HK (Eds). Insect Pathology. Second Edition. pp. 73–131. Academic Press. San Diego.
Wang X, Liu X, Makalliwa GA, Li J, Wang H, Hu Z, & Wang M. 2017. Per os infectivity factors: a complicated and evolutionarily conserved entry machinery of baculovirus. Sci. China Life Sci. 60(8): 806–815. https://doi.org/10.1007/s11427-017-9127-1
Xu YP, Cheng RL, Xi Y, & Zhang CX. 2013. Genomic diversity of Bombyx mori nucleopolyhedrovirus strains. Genomics. 102(1): 63–71. https://doi.org/10.1016/j.ygeno.2013.04.015