Unveiling alliinase gene candidates in shallots using resistance gene motif-based degenerate primers
Main Article Content
Abstract
Shallots are integral to Indonesian daily life, with annual production reaching two million tons. However, the superior varieties are often susceptible to disease, highlighting the need for new resistant varieties. Understanding the genetic basis of disease resistance is crucial for breeding efforts aimed at developing new varieties. Alliinase, an enzyme crucial for garlic defense, is a potential candidate for enhancing shallot resistance. This study aims to identify alliinase gene candidates in shallots using degenerate primers. Genomic DNA from the Bima Brebes genotype was isolated, and degenerate primers successfully amplified 600–800 bp fragments. Three sequences were selected for further analysis, with one sequence showing high similarity to known resistance genes. Multiple sequence alignment revealed characteristic resistance gene motifs, supporting their candidacy as resistance genes. Phylogenetic analysis grouped these sequences with known resistance genes, further supporting their potential. These findings provide valuable insights for breeding programs aiming to enhance resistance in shallots through a molecular breeding approach. The identified alliinase gene candidates can be used to develop disease-resistant shallot varieties. Incorporating these genes into breeding programs can enhance resistance, improving yield and stability in shallot production.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Abdelrahman M, Ariyanti NA, Sawada Y, Tsuji F, Hirata S, Hang TTM, Okamoto M, Yamada Y, Tsugawa H, Hirai MY, & Shigyo M. 2020. Metabolome-based discrimination analysis of shallot landraces and bulb onion cultivars associated with differences in the amino acid and flavonoid profiles. Molecules. 25(22): 5300. https://doi.org/10.3390/molecules25225300
Ali MRM, Uemura T, Ramadan A, Adachi K, Nemoto K, Nozawa A, Hoshino R, Abe H, Sawasaki T, & Arimura GI. 2018. The ring-type E3 ubiquitin ligase JUL1 targets the VQ-motif protein JAV1 to coordinate jasmonate signaling. Plant Physiology. 179(4): 1273–1284. https://doi.org/10.1104/pp.18.00715
Al-Khayri JM, Rashmi R, Toppo V, Chole PB, Banadka A, Sudheer WN, Nagella P, Shehata WF, Al-Mssallem MQ, Alessa FM, Almaghasla MI, & Rezk AAS. 2023. Plant Secondary Metabolites: The Weapons for Biotic Stress Management. Metabolites. 13(6): 716. https://doi.org/10.3390/metabo13060716
Aminfar Z, Rabiei B, Tohidfar M, & Mirjalili M. 2019. Identification of key genes involved in the biosynthesis of triterpenic acids in the mint family. Sci. Rep. 9(1): 15826. https://doi.org/10.1038/s41598-019-52090-z
Arya P, Kumar G, Acharya V, & Singh A. 2014. Genome-wide identification and expression analysis of NBS-encoding genes in Malus x domestica and expansion of NBS genes family in rosaceae. Plos One. 9(9): e107987. https://doi.org/10.1371/journal.pone.0107987
Bouktila D, Khalfallah Y, Habachi-Houimli Y, Mezghani-Khemakhem M, Makni M, & Makni H. 2014. Large-scale analysis of NBS domain-encoding resistance gene analogs in Triticeae. Genet. Mol. Biol. 37(3): 598–610. https://doi.org/10.1590/s1415-47572014000400017
Chandran NK, Sriram S, & Prakash T. 2020. Identification of NBS-LRR resistance gene analogues (RGA) from rose (IIHRR13-4) resistant to powdery mildew (Podosphaera pannosa (Wallr.: Fr.) de Bary). J. Hortic. Sci. 15(1): 81–92. https://doi.org/10.24154/jhs.2020.v15i01.011
Chen SP, Kuo CH, Lu HH, Lo HS, & Yeh KW. 2016. The sweet potato NAC-domain transcription factor IbNAC1 is dynamically coordinated by the activator IbbHLH3 and the repressor IbbHLH4 to reprogram the defense mechanism against wounding. Plos Genet. 12(10): e1006397. https://doi.org/10.1371/journal.pgen.1006397
Chukwuemeka O, Umar HI, Olukunle OF, Oretade OM, Olowosoke CB, Akinsola EO, Elabiyi MO, Kurmi UG, Eigbe JO, Oyelere BR, Isunu LE, & Oretade OJ. 2020. In silico design and validation of a highly degenerate primer pair: a systematic approach Prosper. JGEB. 18(1): 72. https://doi.org/10.1186/s43141-020-00086-y
Collard BCY & Mackill DJ. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. B, Biol. Sci. 363(1491): 557–572. https://doi.org/10.1098/rstb.2007.2170
Doyle JJ & Doyle JL. 1990. Isolation of plant DNA from fresh tissue. Focus. 12(1): 13–15.
He H, Guo R, Gao A, Chen Z, Liu, R, Liu T, Kang X, & Zhu, S. 2022. Large-scale mutational analysis of wheat powdery mildew resistance gene Pm21. Front. Plant Sci. 13: 988641. https://doi.org/10.3389/fpls.2022.988641
Kiselev K & Dubrovina AS. 2009. A new method for analyzing gene expression based on frequency analysis of RT-PCR products obtained with degenerate primers. Acta Physiol. Plant. 32(3): 495–502. https://doi.org/10.1007/s11738-009-0426-9
McHale L, Tan X, Koehl P, & Michelmore RW. 2006. Plant NBS-LRR proteins: adaptable guards. Genome Biol. 7(4): 212. https://doi.org/10.1186/gb-2006-7-4-212
Nishimura K, Kokaji H, Motoki K, Yamazaki A, Nagasaka K, Mori T, Takisawa R, Yasui Y, Kawai T, Ushijima K, Yamasaki M, Saito H, Nakano R, & Nakazaki T. 2024. Degenerate oligonucleotide primer MIG-seq: an effective PCR-based method for high-throughput genotyping. Plant J. 118(6): 2296–2317. https://doi.org/10.1111/tpj.16708
Nishmitha K, Singh R, Dubey SC, Akhtar J, & Kamil D. 2022. Resistance screening and in-silico characterization of cloned novel RGA from multi race resistant lentil germplasm against fusarium wilt (Fusarium oxysporum f. sp. lentis). bioRxiv preprint. https://doi.org/10.1101/2022.08.16.504179
Nwachukwu ID, Slusarenko AJ, & Gruhlke MCH. 2012. Sulfur and sulfur compounds in plant defence. Nat. Prod. Commun. 7(3): 395–400.
Ovesná J, Mitrová K, & Ku?era L. 2015. Garlic (A. sativum L.) alliinase gene family polymorphism reflects bolting types and cysteine sulphoxides content. BMC Genet. 16: 53. https://doi.org/10.1186/s12863-015-0214-z
Pan Z, Barry R, Lipkin A, & Soloviev M. 2007. Selection strategy and the design of hybrid oligonucleotide primers for RACE-PCR: cloning a family of toxin-like sequences from Agelena orientalis. BMC Molecular Biol. 8: 32. https://doi.org/10.1186/1471-2199-8-32
Naresh P, Reddy MK, Reddy AC, Lavanya B, Reddy DCL, & Reddy KM. 2017. Isolation, characterization and genetic diversity of NBS-LRR class disease-resistant gene analogs in multiple virus resistant line of chilli (Capsicum annuum L.). Biotech. 7(2): 114. https://doi.org/10.1007/s13205-017-0720-y
Peška V, Mandáková T, Ihradská V, Fajkus J. 2019. Comparative dissection of three giant genomes: Allium cepa, Allium sativum, and Allium ursinum. Int. J. Mol. Sci. 20(3): 733. https://doi.org/10.3390/ijms20030733
Prajapati MR, Singh J, Kumar P, & Dixit R. 2023. De novo transcriptome analysis and identification of defensive genes in garlic (Allium sativum L.) using high-throughput sequencing. JGEB. 21(1): 56. https://doi.org/10.1186/s43141-023-00499-5
Reddy AC, Venkat S, Singh TH, Aswath C, Reddy KM, & Reddy DCL. 2015. Isolation, characterization and evolution of NBS-LRR encoding disease-resistance gene analogs in eggplant against bacterial wilt. Eur. J. Plant Pathol. 143: 417–426. https://doi.org/10.1007/s10658-015-0693-9
Rice P, Longden I, & Bleasby A. 2000. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 16(6): 276–277. https://doi.org/10.1016/s0168-9525(00)02024-2
Salgotra RK & Stewart Jr CN. 2020. Functional markers for precision plant breeding. Int. J. Mol. Sci. 21(13): 4792. https://doi.org/10.3390/ijms21134792
Sambrook J, Fritsch EF & Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press. USA.
Seshadri R, Reeve WG, Ardley JK, Tennessen K, Woyke T, Kyrpides NC, & Ivanova NN. 2015. Discovery of novel plant interaction determinants from the genomes of 163 root nodule bacteria. Sci. Rep. 5: 16852 https://doi.org/10.1038/srep16825
Soorni A, Akrami AM, Abolghasemi R, & Vahedi M. 2021. Transcriptome and phytochemical analyses provide insights into the organic sulfur pathway in Allium hirtifolium. Sci. Rep.11: 768. https://doi.org/10.1038/s41598-020-80837-6
Thudi M, Palakurthi R, Schnable JC, Chitikineni A, Dreisigacker S, Mace E, Srivastava RK, Satyavathi T, Odeny D, Tiwari VK, Lam HM, Hong YB, Singh VK, Li G, Xu Y, Chen X, Kaila S, Nguyen H, Sivasankar S, Jackson SA, Close TJ, Shubo W, & Varshney RK. 2021. Genomic resources in plant breeding for sustainable agriculture. J. Plant Physiol. 257: 153351. https://doi.org/10.1016/j.jplph.2020.153351
Tiku AR. 2018. Antimicrobial compounds and their role in plant defense. In: Singh A & Singh IK (Eds.). In Molecular Aspects of Plant-Pathogen Interaction. pp. 283–307. Springer. Singapore.
Viswanathan V, Phadatare AG, & Mukne A. 2014. Antimycobacterial and antibacterial activity of Allium sativum bulbs. Indian J. Pharm. Sci. 76(3): 256–260.
Wang X, Xu Y, Fan H, Cui N, Meng X, He J, Ran N, & Yu Y. 2023. Research progress of plant nucleotide-binding leucine-rich repeat protein. Horticulturae. 2023: 9(1): 122. https://doi.org/10.3390/horticulturae9010122
Waterhouse AM, Procter JB, Martin DMA, Clamp M, & Barton GJ. 2009. Jalview version2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 25(9): 1189–1191. https://doi.org/10.1093/bioinformatics/btp033
Xu Y, Li P, Yang Z, & Xu C. 2017. Genetic mapping of quantitative trait loci in crops. Crop J. 5(2): 175-184. https://doi.org/10.1016/j.cj.2016.06.003
Yu LX & Yan B. 2013. Development of universal primers for isolating fragments of the LEAFY gene. Genet. Mol. Res. 12(2): 1777–1780. https://doi.org/10.4238/2013.june.6.1
Yu X, Kang DH, Choi SR, Ma Y, Lu L, Oh SH, Chhapekar SS, & Lim, Y. 2018. Isolation and characterization of fusarium wilt resistance gene analogs in radish. 3 Biotech. 8: 255. https://doi.org/10.1007/s13205-018-1279-y
Zhang R, Zheng F, Wei S, Zhang S, Li G, Cao P, & Zhao S. 2019. Evolution of disease defense genes and their regulators in plants. Int. J. Mol. Sci. 20(2): 335. https://doi.org/10.3390/ijms20020335
Zuiter, AS, Sawwan J, & Al-Abdallat A. 2012. Designing universal primers for the isolation of DNA sequences encoding proanthocyanidins biosynthetic enzymes in Crataegus aronia. BMC Res. Notes. 5(1): 427. https://doi.org/10.1186/1756-0500-5-427