In vitro assessment of antifungal activity of cinnamon leaves extract against the Colletotrichum sp. causes of anthracnose on tomato
Main Article Content
Abstract
Tomato is a horticultural plant widely cultivated in Bali. Over the three years, the productivity and quality of this plant have tended to decrease due to pathogen-derived diseases, such as anthracnose caused by Colletotrichum sp. Until recently, control of this pathogenic fungus has relied on chemical-based fungicides, which lead to many long-term complications, including pathogen resistance, environmental pollution, the extinction of non-target microorganisms, and negative impacts on human health. Therefore, alternative methods for plant disease control are urgently needed to combat these pathogen attacks. The use of plant-derived active compounds has been intensively researched worldwide as a more environmentally friendly alternative. The main objective of this research was to investigate the effectiveness of Cinnamomum burmanii acetone extract in inhibiting the growth of Colletotrichum sp., the causative agent of anthracnose in tomatoes, through an in vitro approach. A non-factorial randomized complete design was applied in the experiment. The results showed that the crude extract of cinnamon leaves inhibited the growth of the Colletotrichum sp. with an MIC value of 0.9%, an inhibition zone of 2.55 mm, and an optimal inhibitory concentration of 2%, producing an inhibition zone of 11.10 mm. A GC-MS analysis was conducted to identify the active compounds in the cinnamon leaf extract. Sixteen active compounds were identified, nine of which are known to have antimicrobial activity.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Akkol EK, Genç Y, Karpuz B, Sobarzo-Sánchez E, & Capasso R. 2020. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers. 12(7): 1959. https://doi.org/10.3390/cancers12071959
Akpuaka A, Ekwenchi MM, Dashak DA, & Dildar A. 2013. Biological activities of characterized isolates of n-hexane extract of Azadirachta indica A.Juss (neem) leaves. N Y Sci J. 6(6): 119–124.
Albano M, Crulhas BP, Alves FCB, Pereira AFM, Andrade BFMT, Barbosa LN, Furlanetto A, Lyra LPdS, Rall VLM, & Júnior AF. 2019. Antibacterial and anti-biofilm activities of cinnamaldehyde against S. epidermidis. Microb. Pathog. 126: 231– 238. https://doi.org/10.1016/j.micpath.2018.11.009
Annunziata F, Pinna C, Dallavalle S, Tamborini L, & Pinto A. 2020. An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities. Int. J. Mol. Sci. 21(13): 4618. https://doi.org/10.3390/ijms21134618
Bonita Y, Jain V, Geng F, O’Connell TP, Ramos NX, Rai N, & Hicks JC. 2020. Hydrogenation of cinnamaldehyde to cinnamyl alcohol with metal phosphides: Catalytic consequences of product and pyridine doping. Appl. Catal. B: Environ. 277: 119272. https://doi.org/10.1016/j.apcatb.2020.119272
Carneiro A, Matos MJ, Uriarte E & Santana L. 2021. Trending topics on coumarin and its derivatives in 2020. Molecules. 26(2): 501. https://doi.org/10.3390/molecules26020501
Cannon PF, Damm U, Johnston PR, & Weir BS. 2012. Colletotrichum: Current status and future directions. Stud. Mycol. 73(1): 181–213. https://doi.org/10.3114/sim0014
Chowdhary K & Kaushik N. 2018. Biodiversity study and potential of fungal endophytes of peppermint and effect of their extract on chickpea rot pathogens. Arch. Phytopathol. Pflanzenschutz. 51(3-4): 139–155. https://doi.org/10.1080/03235408.2018.1440707
Chung PC, Wu HY, Wang YW, Ariyawansa HA, Hu HP, Hung TH, Tzean SS, & Chung CL. 2020. Diversity and pathogenicity of Colletotrichum species causing strawberry anthracnose in Taiwan and description of a new species, Colletotrichum miaoliense sp. nov. Sci. Rep. 10: 14664. https://doi.org/10.1038/s41598-020-70878-2
da Silva LL, Moreno HLA, Correia HLN, Santana MF, & de Queiroz MV. 2020. Colletotrichum: Species complexes, lifestyle, and peculiarities of some sources of genetic variability. Appl. Microbiol. Biotechnol. 104: 1891–1904. https://doi.org/10.1007/s00253-020-10363-y
Darmadi AAK, Suprapta DN, Temaja IGRM, & Swantara IMD. 2015. Leaf extract of Cinnamomum burmanni Blume effectively suppress the growth of Fusarium oxysporum f.sp. lycopersici the cause of fusarium wilt disease on tomato. J Biol Agric Healthcare. 5(4): 131–137.
Darmadi AAK, Suriani NL, Ginantra IK, & Sudirga SK. 2022. Effectiveness of cinnamon leaf extract to control anthracnose disease on large chilies in Bali, Indonesia. Biodiversitas. 23(6): 2859–2864. https://doi.org/10.13057/biodiv/d230611
Dowling M, Peres N, Villani S, & Schnabel G. 2020. Managing Colletotrichum on fruit crops: A ‘complex’ challenge. Plant Dis. 104(9): 2301–2316. https://doi.org/10.1094/PDIS-11-19-2378-FE
Doyle AA & Stephens JC. 2019. A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia 139: 104405. https://doi.org/10.1016/j.fitote.2019.104405
Farida Y, Azela W, Lestari ME, & Pratami DK. 2021. The quality parameters, total flavonoids determination and antioxidant activity compound of andaliman fruit andaliman fruit (Zanthoxylum acanthopodium DC.) extract. Int. J. Appl. Pharm. 13(2): 34–40. https://doi.org/10.22159/ijap.2021.v13s2.07
Ferdosi MFH, Javaid A, Khan IH, Fardosi MFA & Munir A. 2021. Bioactive components in methanolic flower extract of Ageratum conyzoides. Pak. J. Weed Sci. Res. 27(2): 181–190. https://doi.org/10.28941/pjwsr.v27i2.954
Flanagan JN & Steck TR. 2017. The relationship between agar thickness and antimicrobial susceptibility testing. Indian J. Microbiol. 57(4): 503–506. https://doi.org/10.1007/s12088-017-0683-z
Gurusinga RE, Retnowati L, Wiyono S, & Tondok ET. 2020. Dampak penggunaan fungisida sintetik pada kelimpahan cendawan endofit tanaman padi [The impact of synthetic fungicides application on abundance of endophytic fungi of rice plants]. JIPI. 25(3): 432–439. https://doi.org/10.18343/jipi.25.3.432
Hawar SN, Taha ZK, Hamied AS, Al-Shmgani HS, Sulaiman GM, & Elsilk SE. 2023. Antifungal activity of bioactive compounds produced by the endophytic fungus Paecilomyces sp. (JN227071.1) against Rhizoctonia solani. Int. J. Biomater. 20: 2411555. https://doi.org/10.1155/2023/2411555
He Z, Huang Z, Jiang W, & Zhou W. 2019. Antimicrobial activity of cinnamaldehyde on Streptococcus mutans biofilms. Front. Microbiol. 10: 2241. https://doi.org/10.3389/fmicb.2019.02241
Herliyana EN, Sakbani L, Herdiyeni Y, & Munif A. 2020. Identifikasi cendawan patogen penyebab penyakit pada daun jabon merah (Anthocephalus macrophyllus (Roxb.) Havil) [Identification fungi pathogen cause of disease in red leaf jabon (Anthocephalus macrophyllus (Roxb.) Havil)]. Jurnal Silvikultur Tropika. 11(3): 154–162. https://doi.org/10.29244/j-siltrop.11.3.154-162
Intan K, Diani A, & Nurul ASR. 2021. Aktivitas antibakteri kayu manis (Cinnamomum burmanii) terhadap pertumbuhan Staphylococcus aureus [Antibacterial activity of cinnamon (Cinnamomum burmanii) against the growth of Staphylococcus aureus]. Jurnal Kesehatan Perintis. 8(2): 121–127. https://doi.org/10.33653/jkp.v8i2.679
Kowalska J, Tyburski J, Matysiak K, Jakubowska M, ?ukaszyk J, & Krzyminska J. 2021. Cinnamon as a useful preventive substance for the care of human and plant health. Molecules. 26(17): 5299. https://doi.org/10.3390/molecules26175299
Kumar SP, Srinivasulu A, & Babu KR. 2018. Symptomology of major fungal diseases on tomato and its management. J. Pharmacogn. Phytochem. 7(6): 1817–1821.
Kumar A, Kaur S, Dhiman S, Singh PP, Bhatia G, Thakur S, Tuli HS, Sharma U, Kumar S, Almutary AG, Alnuqaydan AM, Hussain A, Haque S, Dhama K, & Kaur S. 2022a. Targeting Akt/NF-kB/p53 pathway and apoptosis inducing potential of 1,2-Benzenedicarboxylic acid, bis (2-Methyl propyl) ester isolated from Onosma bracteate Wall. against human osteosarcoma (MG-63) cells. Molecules. 27(11): 3478. https://doi.org/10.3390/molecules27113478
Kumar PS, Reegan AD, Rajakumari K, Asharaja AC, Balakrishna K, & Ignacimuthu S. 2022b. Bio-efficacy of soil actinomycetes and an isolated molecule 1,2-Benzenedicarboxylic acid from Nonomuraea sp. against Culex quinquefasciatus Say and Aedes aegypti L. mosquitoes (Diptera: Culicidae). Appl. Biochem. Biotechnol. 194: 4765–4782. https://doi.org/10.1007/s12010-021-03766-8
Liang Y, Li Y, Sun A, & Liu X. 2019. Chemical compound identification and antibacterial activity evaluation of cinnamon extracts obtained by subcritical n?butane and ethanol extraction. Food Sci. Nutr. 7(6): 2186–2193. https://doi.org/10.1002/fsn3.1065
Lv Y, Han M, Gong W, Wang D, Chen C, Wang G, Zhang H, & Zhao H. 2020. Fe-Co alloyed nanoparticles catalysed efficient hydrogenation of cinnamaldehyde to cinnamyl alcohol in water. Angew. Chem. Int. Ed. 59(52): 23521–23526. https://doi.org/10.1002/anie.202009913
Mishra S, Pandey A, & Manvati S. 2020. Coumarin: An emerging antiviral agent. Heliyon. 6(1): e03217. https://doi.org/10.1016/j.heliyon.2020.e03217
Mongkolporn O & Taylor PWJ. 2018. Chili anthracnose: Colletotrichum taxonomy and pathogenicity. Plant Pathol. 67(6): 1255–1263. https://doi.org/10.1111/ppa.12850
Nabila R, Purnamasari CB & Alhawaris. 2021. Uji aktivitas antibakteri ekstrak etanol daun kayu manis (Cinnamomum Burmannii Blume) terhadap pertumbuhan bakteri Porphyromonas gingivalis dengan metode disc diffusion [Test of the antibacterial activity of ethanol extract of cinnamon leaves (Cinnamomum Burmannii Blume) on the growth of Porphyromonas gingivalis bacteria using the disc diffusion method]. J. Ked. Mulawarman. 8(2): 64–72.
Prasetyo A. 2017. Pemanfaatan kitosan untuk pengendalian penyakit antraknosa (Colletotrichum sp.) pada cabai (Capsicum annuum L.) Skripsi. Bogor: Fakultas Pertanian, Institut Pertanian Bogor.
Prasetyorini, Utami NF, Yulianita, Novitasari N, & Fitriyani W. 2021. Potensi ekstrak refluks kulit batang kayu manis (Cinnamomum burmannii) sebagai antijamur Candida albicans dan Candida tropicalis [The potent of cinnamon bark reflux extract (Cinnamomum burmannii) as an anti-fungal Candida albicans and Candida tropicalis]. Jurnal Fitofarmaka. 11(2):164–178. https://doi.org/10.33751/jf.v11i2.2722
Rafif KA, Intan ST, Hamida HR, Cinta A, & Yan A. 2022. Beneficial impacts and phytocomponents of cinnamomum in Indonesia. Res. J. Biotech. 17(10): 114–123. https://doi.org/10.25303/1710rjbt1140123
Raman BV, Samuel LA, Saradhi PM, Rao NB, Krishna NVA, Sudhakar M, & Radhakrishnan TM. 2012. Antibacterial, antioxidant activity and GC-MS analysis of Eupatorium odoratum. Asian J. Pharm. Clin. Res. 5(2): 99–106.
Sahoo CR, Sahoo J, Mahapatra M, Lenka D, Sahu PK, Dehury B, Padhy RN, & Paidesetty SK. 2021. Coumarin derivatives as promising antibacterial agent(s). Arab J. Chem. 14(2): 102922. https://doi.org/10.1016/j.arabjc.2020.102922
Shaaban MT, Ghaly MF, & Fahmi SM. 2021. Antibacterial activities of hexadecanoic acid methyl ester and green-synthesized silver nanoparticles against multidrug-resistant bacteria. J. Basic Microbiol. 61(6): 557–568. https://doi.org/10.1002/jobm.202100061
Shahriar SA, Husna A, Paul TT, Eaty MNK, Quamruzzaman M, Siddique AB, Rahim MdA, Ahmmed ANF, Uddain J, & Siddiquee S. 2023. Colletotrichum truncatum causing anthracnose of tomato (Solanum lycopersicum L.) in Malaysia. Microorganisms. 11(1): 226. https://doi.org/10.3390/microorganisms11010226
Singh R, Singh SK, Maharia RS & Garg AN. 2015. Identification of new phytoconstituents and antimicrobial activity in stem bark of Mangifera indica (L.). J. Pharm Biomed Anal. 105: 150–155. https://doi.org/10.1016/j.jpba.2014.12.010
Silva P, Fernandes C, Barros L, Ferreira ICFR, Pereira L, & Gonçalves T. 2018. The antifungal activity of extracts of Osmundea pinnatifida, an edible seaweed, indicates its usage as a safe environmental fungicide or as a food additive preventing post-harvest fungal food contamination. Food Funct. 9(12): 6187–6195. https://doi.org/10.1039/C8FO01797B
Skanda S & Vijayakumar BS. 2021. Antioxidant and anti-inflammatory metabolites of a soil-derived fungus Aspergillus arcoverdensis SSSIHL-01. Curr. Microbiol. 78: 1317–1323. https://doi.org/10.1007/s00284-021-02401-3
Smaoui S, Mathieu F, Elleuch L, Coppel Y, Merlina G, Karray-Rebai I, & Mellouli L. 2012. Taxonomy, purification and chemical characterization of four bioactive compounds from new Streptomyces sp. TN256 strain. World J. Microbiol. Biotechnol. 28: 793–804. https://doi.org/10.1007/s11274-011-0872-6
Sopialena S, Subiono T, Rosyidin AU, & Tantiani D. 2022. Control of anthracnose disease in tomato (Solanum lycopersicum) using endophytic fungi. In First Asian PGPR Indonesia Chapter International e-Conference 2021, KnE Life Sciences. pp. 393–408. https://doi.org/10.18502/kls.v7i3.11147
Sudirga SK. 2016. Isolasi dan identifikasi jamur Colletotrichum spp. isolat PCS penyebab penyakit antraknosa pada buah cabai besar (Capsicum annuum L.) di Bali [Isolation and Identification of the fungus Colletotrichum sp. PCS isolates causing anthracnose disease in large chili fruits (Capsicum annuum L.) in Bali]. Jurnal Metamorfosa. III(1): 23–30.
Sudirga SK, Wijaya IMS, & Darmadi AAK. 2022. First testimony of new host plant of Colletotrichum magnum (S.F. Jenkins & Winstead) Rossman & W.C. Allen causing anthracnose in Carica papaya L. fruits in Bali, Indonesia. SABRAO J. Breed. Genet. 54(4): 834–841. https://doi.org/10.54910/sabrao2022.54.4.14
Suprapta DN, Sudarma M, Arya N, & Ohsawa K. 2005. Plants extract to control wilt disease in banana seedlings. J. ISSAAS. 11(2): 84–90.
Sutriadi M, Harsanti ES, Wahyuni S, & Wihardjaka A. 2020. Pestisida nabati: Prospek pengendali hama ramah lingkungan [Botanical pesticides: The prospect of environmentally friendly pest control]. Jurnal Sumberdaya Lahan. 13(2): 89–101.
Talhinhas P & Baroncelli R. 2021. Colletotrichum species and complexes: geographic distribution, host range and conservation status. Fungal Diversity. 110: 109–198. https://doi.org/10.1007/s13225-021-00491-9
Talie MD, Wani AH, Lone BA, & Bhat MY. 2020. Chemical composition and antifungal activity of essential oil of Rhizopogon species against fungal rot of apple. JABS. 14(3): 296–308.
Vasconcelos NG, Croda J, & Simionatto S. 2018. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb. Pathog. 120: 198–203. https://doi.org/10.1016/j.micpath.2018.04.036
Yue L, Sun D, Khan IM, Liu X, Jiang Q, & Xia W. 2020. Cinnamyl alcohol modified chitosan oligosaccharide for enhancing antimicrobial activity. Food Chem. 309: 125513. https://doi.org/10.1016/j.foodchem.2019.125513
Zakaria L. 2021. Diversity of Colletotrichum species associated with anthracnose disease in tropical fruit crops — A Review. Agriculture. 11(4): 297. https://doi.org/10.3390/agriculture11040297
Zayed MK, Wu A, & Sallam S. 2019. Comparative phytochemical constituents of Leucaena leucocephala (Lam.) leaves, fruits, stem barks, and wood branches grown in Egypt using GC-MS method coupled with multivariate statistical approaches. BioRes. 14(1): 996–1013. https://doi.org/10.15376/BIORES.14.1.996-1013