The potential of secondary metabolites of Trichoderma viride T1sk extracted with organic solvents etil acetate and butanol in suppressing the growth of Colletotrichum gloeosporioides in vitro
Main Article Content
Abstract
The control of Colletotrichum gloeosporioides, the causal agent of anthracnose in chili, is typically achieved through synthetic fungicides, which pose risks to both the environment and consumers. As a safer alternative, microbial-derived biopesticides offer an environmentally friendly solution. This study aimed to evaluate the potential of secondary metabolites produced by Trichoderma viride T1sk, extracted using organic solvents with different polarities (ethyl acetate and butanol), to inhibit the growth of C. gloeosporioides in vitro. A Completely Randomized Design (CRD) was used, comprising three treatments with six replications, each consisting of two petri dish units. The treatments included: (A) ethyl acetate extract, (B) butanol extract, and (C) a control. The media poisoning method was employed to assess the antifungal activity of the extracts. Key parameters observed were colony area, conidial count, conidial germination rate, and propagule density of C. gloeosporioides. The results demonstrated that both ethyl acetate and butanol effectively extracted antifungal secondary metabolites from T. viride T1sk. In general, these metabolites significantly suppressed the growth of C. gloeosporioides. Among the solvents tested, butanol exhibited the highest efficacy in extracting antifungal compounds and consistently achieving the strongest inhibition across all observed variables.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Cardoza RE, Malmierca MG, Hermosa MR, Alexander NJ, McCormick SP, Proctor RH, Tijerino AM, Rumbero A, Monte E, & Guiterrez S. 2011. Identification of loci and functional characterization of trichothecene biosynthetic genes in filamentous fungi of the genus Trichoderma. Appl. Environ. Microbiol. 77(14): 4867–4877. https://doi.org/10.1128/AEM.00595-11
Chet INB, & Haran S. 1998. Mycoparasitism and Lytic Enzymes. In: Trichoderma and Gliocladium enzymes biological control and commercial applications Volume 2. pp. 153–171. Taylor and Francis London, United Kingdom.
Conrado R, Gomes TC, Roque GSC, & De Souza AO. 2022. Overview of bioactive fungal secondary metabolites: Cytotoxic and antimicrobial compounds. Antibiotics. 11(11): 1604. https://doi.org/10.3390/antibiotics11111604
Degenkolb T, von Döhren H, Nielsen KF, Samuels GJ, & Brückner H. 2008. Recent advances and future prospects in peptibiotics, hydrophobin, and mycotoxin research, and their importance for chemotaxonomy of Trichoderma and Hypocrea. Chem. Biodiversity. 5(5): 671–680. https://doi.org/10.1002/cbdv.200890064
Dirar AI, Alsaadi DHM, Wada M, Mohamed MA, Watanabe T, & Devkota HP. 2019. Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. S. Afr. J. Bot. 120: 261–267. https://doi.org/10.1016/j.sajb.2018.07.003
Guzmán-Guzmán P, Kumar A, de los Santos-Villalobos S, Parra-Cota FI, Orozco-Mosqueda MdC, Fadiji AE, Hyder S, Babalola OO, & Santoyo G. 2023. Trichoderma species: Our best fungal allies in the biocontrol of plant diseases—A review. Plants. 12(3): 432. https://doi.org/10.3390/plants12030432
Harahap TFHL, Lubis L, & Hasanuddin H. 2013. Efek temperatur terhadap virulensi jamur Colletotrichum gloeosporioides Penz. Sacc. penyebab penyakit antraknosa pada tanaman kakao (Theobroma cacao L.) [Temperature effect towards virulency of Colletotrichum gloeosporioides Penz. Sacc. fungal disesase caused of anthracnose on cocoa (Theobroma cacao L.)]. J. Online Agroekoteknologi. 2(1): 411–420.
Harni R, Amaria W, Syafaruddin, & Mahsunah H. 2017. Potensi metabolit sekunder Trichoderma spp. untuk mengendalikan penyakit vascular streak dieback (VSD) pada bibit kakao [Potential of Trichoderma spp. secondary metabolite in controlling vascular streak dieback (VSD) on cacao seedlings]. J. TIDP. 4(2): 57–66.
Hersila N, Chatri M, Vauzia, & Irdawati. 2023. Senyawa metabolit sekunder (tanin) pada tanaman sebagai antifungi [Secondary metabolite compounds (tannins) in plants as antifungi]. Jurnal Embrio. 15(1): 16–22. https://doi.org/10.31317/embrio.v15i1.882
Howell CR. 1999. Selective isolation from soil and separation in vitro of P and Q strains of Trichoderma virens with differential media. Mycologia. 91(6): 930–934. https://doi.org/10.1080/00275514.1999.12061103
Iqbal U & Mukhtar T. 2020. Evaluation of biocontrol potential of seven indigenous Trichoderma species against charcoal rot causing fungus, Macrophomina phaseolina. Gesunde Pflanzen. 72(2): 195–202. https://doi.org/10.1007/s10343-020-00501-x
Junianto YD & Sukamto S. 1995. The effect of temperature and relative humidity on germination, growth and sporulation of several isolates of Beauveria bassiana. Pelita Perkebunan. 11(2): 64–75.
Khan RAA, Najeeb S, Hussain S, Xie B, & Li Y. 2020. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms. 8(6): 817. https://doi.org/10.3390/microorganisms8060817
Kim KH, Yoon JB, Park HG, Park EW, & Kim YH. 2004. Structure modifications and programmed cell death of chili pepper fruit related to resistance responses to Colletotrichum gloeosporioides infection. Phytopathology. 94(12): 1295–1304. https://doi.org/10.1094/PHYTO.2004.94.12.1295
Lacey’s LA. 1997. Manual of Techniques in Insect Pathology. Academic Press. California.
Lakhdari W, Benyahia I, Bouhenna MM, Bendif H, Khelafi H, Bachir H, Ladjal A, Hammi H, Mouhoubi D, Khelil H, Alomar TS, AlMasoud N, Boufafa N, Boufahja F, & Dehliz A. 2023. Exploration and evaluation of secondary metabolites from Trichoderma harzianum: GC-MS analysis, phytochemical profiling, antifungal and antioxidant activity assessment. Molecules. 28(13): 5025. https://doi.org/10.3390/molecules28135025
Lee S, Hung R, Yap M, & Bennett JW. 2015. Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth. Arch. Microbiol. 197: 723–727. https://doi.org/10.1007/s00203-015-1104-5
Lefebvre T, Destandau E, & Lesellier E. 2021. Selective extraction of bioactive compounds from plants using recent extraction techniques: A review. J. Chromatogr. A. 1635: 461770. https://doi.org/10.1016/j.chroma.2020.461770
Li MF, Li GH, Zhang KQ. 2019. Non-volatile metabolites from Trichoderma spp. Metabolites. 9(3): 58. https://doi.org/10.3390/metabo9030058
Manda RR, Pavithra G, Addanki VA, & Srivastava S. 2020. Anthracnose of Capsicum annuum L. (Chilli). Int. J. Curr. Microbiol. App. Sci. 9(11): 749–756. https://doi.org/10.20546/ijcmas.2020.911.090
Ming Q, Han T, Li W, Zhang Q, Zhang H, Zheng C, Huang F, Rahman K, & Qin L. 2012. Tanshinone II A and tanshinone I production by Trichoderma atroviride D16, an endophytic fungus in Salvia miltiorrhiza. Phytomedicine. 19(3–4): 330–333. https://doi.org/10.1016/j.phymed.2011.09.076
Mukherjee PK, Horwitz BA, & Kenerley CM. 2012. Secondary metabolism in Trichoderma-a genomic perspective. Microbiology. 158(1): 35–45. https://doi.org/10.1099/mic.0.053629-0
Nurbailis, Yanti Y, & Djamaan A. 2023. Potential of Trichoderma viride secondary metabolites extracted with ethyl acetate in suppressing the growth of Colletotrichum gloeosporioides in vitro. AIP Conf. Proc. 2830: 080007. https://doi.org/10.1063/5.0128142
Rao SP & Sunkada S. 2007. Making sense of boiling points and melting points. Resonance. 12(6): 43–57. https://doi.org/10.1007/s12045-007-0059-5
Reino JL, Guerrero RF, Hernández-Galán R, & Collado IG. 2008. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem. Rev. 7: 89–123. https://doi.org/10.1007/s11101-006-9032-2
Roberts PD, Pernezny KL, & Kucharek TA. 2018. Anthracnose on Pepper in Florida. the Plant Pathology Department, UF/IFAS Extension. http://edis.ifas.ufl.edu/PP104. Accessed 16 January 2023.
Roy S & Banerjee D. 2010. Isolation of antimicrobial compound by endophytic bacteria from Vinca rosea. Int. J. Curr. Res. 5: 047–051.
Simorangkir M, Hutabarat W, Nainggolan B, & Silaban S. 2019. Antioxidant and antibacterial activities of non-polar to polar solvent extracts of Sarang banua (Clerodenrum fragrans Vent Willd) leaves. Rasayan J. Chem. 12(2): 959–965. https://doi.org/10.31788/RJC.2019.1225095
Subandrate S, Sinulingga S, Adma AC, Monanda MDA, Fatmawati F, Safyudin S, & Oswari LD. 2024. Effect of solvent polarity on secondary metabolite content and ?-glucosidase enzyme IC50 of Dendrophthoe pentandra (L). Miq leaves extract. JIFI. 22(1): 1–7. http://dx.doi.org/10.35814/jifi.v22i1.1363
Tudi M, Ruan HD, Wang L, Lyu J, Sadler R, Connell D, Chu C, & Phung DT. 2021. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health. 18(3): 1112. https://doi.org/10.3390/ijerph18031112
Vandemolen KM, Raja HA, El-ELimat T, & Obelies NH. 2013. Evaluation of culture media for the production of secondary metabolites in a natural products screening program. AMB Express. 3: 71. https://doi.org/10.1186/2191-0855-3-71
Vinale F & Sivasithamparam K. 2020. Beneficial effects of Trichoderma secondary metabolites on crops. Phytother. Res. 34(11): 2835–2842. https://doi.org/10.1002/ptr.6728
Vinale F, Sivasithamparam K, Ghisalberti EL, Woo SL, Nigro M, Marra R, Lombardi N, Pascale A, Ruocco M, Lanzuise S, Manganiello G, & Lorito M. 2014. Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol. J. 8(1): 127–139. https://doi.org/10.2174/1874437001408010127
Voorrips RE, Finkers R, Sanjaya L, & Groenwold R. 2004. QTL mapping of anthracnose (Colletotrichum spp.) resistance in a cross between Capsicum annuum and C. chinense. Theor. Appl. Genet. 109(6): 1275–1282. https:doi.org/10.1007/s00122-004-1738-1
Yusnawan E. 2013. The effectiveness of polar and non polar fractions of Ageratum conyzoides L. to control peanut rust disease and phytochemical screenings of secondary metabolites. J. Trop. Plant Pests Dis. 13(2): 159–166. http://dx.doi.org/10.23960/j.hptt.213159-166
Zaynab M, Fatima M, Abbas S, Sharif Y, Umair M, Zafar MH, & Bahadar K. 2018. Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 124: 198–202. https://doi.org/10.1016/j.micpath.2018.08.034
Zeilinger S, Gruber S, Bansal R, & Mukherjee PK. 2016. Secondary metabolism in Trichoderma–Chemistry meets genomics. Fungal Biol. Rev. 30(2): 74–90. https://doi.org/10.1016/j.fbr.2016.05.001