Application of Bio P60 and Bio T10 alone or in combination to control Fusarium wilt of Hydroponic Melon

Main Article Content

Loekas Soesanto
Ika Vidi Nuraini
Murti Wisnu Ragil Sastyawan
Endang Mugiastuti
Ni Wayan Anik Leana
Ruth Feti Rahayuniati

Abstract

The research aimed to determine the effect of single and combined applications of Bio P60 and Bio T10 in suppressing stem base rot and its effect on the growth and production of hydroponic melon. This research was conducted at Flos Hydroponic Organic at Bansari Village, Bansari District, Temanggung Regency from February to June 2023. Randomized Block Design was used with 6 replicates. The treatments were control (propamocarb hydrochloride), Bio P60, Bio T10, and a combination of Bio P60 and Bio T10 (1:1, v/v). Variables observed were incubation period, disease intensity, infection rate, area under disease progress curve (AUDPC), control effectiveness, plant length, number of leaves, fresh weight, leaf color, first flowering date, first fruit formation, number of fruits per plant, fruit weight per plant, and phenolic compounds qualitatively. The results showed that the combined treatment of Bio P60 and Bio T10 had the best effect indicated by delaying the incubation period, reducing disease intensity, reducing infection rates, reducing AUDPC values, increasing the value of control effectiveness, increasing plant length, number of leaves, plant fresh weight, leaf color, time of first flower appearance, time of fruiting, and fruit weight respectively of 31.25, 41.19, 13.33, 65.31, 55.61, 17.25, 5.57, 36.44, 11.47, 8.55, 9.63, and 22.92 % compared to control. The application of Bio P60, Bio T10, and the combination could increase the phenolic compounds (tannins, saponins, and glycosides) qualitatively in melon leaves.

Article Details

How to Cite
(1)
Soesanto, L. .; Nuraini, I. V.; Sastyawan, M. W. R. .; Mugiastuti, E.; Leana, N. W. A. .; Rahayuniati, R. F. . Application of Bio P60 and Bio T10 Alone or in Combination to Control Fusarium Wilt of Hydroponic Melon. J Trop Plant Pests Dis 2024, 24, 203-215.


Section
Articles

References

Abd-Elgawad MMM & Askary TH. 2020. Factors affecting success of biological agents used in controlling the plant-parasitic nematodes. Egypt. J. Biol. Pest Control. 30: 17. https://doi.org/10.1186/s41938-020-00215-2

Abdullah NS, Doni F, Mispan MS, Saiman MZ, Yusuf YM, Oke MA, & Suhaimi NSM. 2021. Harnessing Trichoderma in agriculture for productivity and sustainability. Agronomy. 11(12): 2559. https://doi.org/10.3390/agronomy11122559

Ahemad M & Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 26(1): 1–20. https://doi.org/10.1016/j.jksus.2013.05.001

BPS. 2022. Produksi Tanaman Buah-buahan 2022 [Fruit Crop Production 2022]. https://www.bps.go.id/id/statistics-table/2/NjIjMg==/produksi-tanaman-buah-buahan.html. Accessed 24 July 2023.

Bean KM, Kisiala AB, Morrison EN, & Emery RJN. 2022. Trichoderma synthesizes cytokinins and alters cytokinin dynamics of inoculated Arabidopsis seedlings. J. Plant Growth Regul. 41: 2678–2694. https://doi.org/10.1007/s00344-021-10466-4

Chairul. 2003. Identifikasi secara cepat bahan bioaktif pada tumbuhan di lapangan [Rapid identification of bioactive compounds in plants in the field] Berita Biologi. 6(4): 621–630.

Chen Y, Xing M, Chen T, Tian S, & Li B. 2023. Effects and mechanisms of plant bioactive compounds in preventing fungal spoilage and mycotoxin contamination in postharvest fruits: A review. Food Chem. 415: 135787. https://doi.org/10.1016/j.foodchem.2023.135787

Cohen R, Orgil G, Burger Y, Saar U, Elkabetz M, Tadmor Y, Edelstein M, Belausov E, Maymon M, Freeman S, & Yarden O. 2015. Differences in the responses of melon accessions to fusarium root and stem rot and their colonization by Fusarium oxysporum f.sp. radicis-cucumerinum. Plant Pathology. 64(3): 655–663. https://doi.org/10.1111/ppa.12286

Edelmann HG. 2022. Plant root development: is the classical theory for auxin-regulated root growth false?. Protoplasma. 259: 823–832. https://doi.org/10.1007/s00709-021-01697-z

Elekhtyar NM. 2015. Efficiency of Pseudomonas fluorescens as Plant Growth-Promoting Rhizobacteria (PGPR) for the Enhancement of Seedling Vigor, Nitrogen Uptake, Yield and Its Attributes of Rice (Oryza sativa L.). Int. J. Sci. Res. Agric. Sci. 2: 057–067.

Ganeshan G & Kumar AM. 2005. Pseudomonas fluorescens, a potential bacterial antagonist to control plant diseases. J. Plant Interact. 1(3): 123–134. https://doi.org/10.1080/17429140600907043

González V, Armijos E & Garcés-Claver A. 2020. Fungal endophytes as biocontrol agents against the main soil-borne diseases of melon and watermelon in Spain. Agronomy. 10(6): 820. https://doi.org/10.3390/agronomy10060820

Gu S, Wei Z, Shao Z, Friman V-P, Cao K, Yang T, Kramer J, Wang X, Li M, Mei X, Xu Y, Shen Q, Kümmerli R, & Jousset A. 2020. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat. Microbiol. 5: 1002–1010. https://doi.org/10.1038/s41564-020-0719-8

Guo R, Li G, Zhang Z, & Peng X. 2022. Structures and biological activities of secondary metabolites from Trichoderma harzianum. Mar. Drugs. 20(11): 701. https://doi.org/10.3390/md20110701

Hao FM, Yan LY, Zang QY, Ma EL, Deng WH, Huang YP, & Wang LH. 2020. Identification of Fusarium from roots and leaves of melon in Zhejiang Province. Chin. Cucurbits Veg. 33: 13–17.

Imazaki I & Kadota I. 2019. Control of Fusarium wilt of melon by combined treatment with biocontrol, plant-activating, and soil-alkalizing agents. J. Gen. Plant Pathol. 85: 128–141. https://doi.org/10.1007/s10327-018-00833-7

Ismi SF, Soesanto L, & Mugiastuti E. 2022. Aplikasi metabolit sekunder Trichoderma harzianum T10 dalam formula tablet larut-air terhadap penyakit rebah semai mentimun [Aplication of Trichoderma harzianum T10 secondary metabolites in effervescent tablets formula towards cucumber damping-off]. Jurnal Fitopatologi Indonesia. 18(4): 177–186. https://doi.org/10.14692/jfi.18.4.177-186

Jacoby RP, Koprivova A, & Kopriva MS. 2021. Pinpointing secondary metabolites that shape the composition and function of the plant microbiome. J. Exp. Bot. 72(1): 57–69. https://doi.org/10.1093/jxb/eraa424

Jaiswal S & Tiwari AK. 2022. Pathological Survey and severity of tomato wilt disease incited by Fusarium oxysporum f.sp. lycopersici in different districts of Uttar Pradesh. IJSDR. 7(9): 129–133.

Kalay AM, Tuhumury GNC, Pesireron N, & Talaharuruson A. 2019. Control of damping off and increased growth of tomato seeds by utilizing Trichoderma harzianum based on solid organic materials. Agrologia: Jurnal Ilmu Budidaya Tanaman. 8(1): 12–20.

Khalid W, Ikram A, Rehan M, Afzal FA, Ambreen S, Ahmad M, Aziz A, & Sadiq A. 2021. Chemical composition and health benefits of melon seed: A review. Pak. J. Agric. Res. 34(2): 254–493. https://doi.org/10.17582/journal.pjar/2021/34.2.309.317

Khan RAA, Najeeb S, Hussain S, Xie B, & Li Y. 2020. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms. 8(6): 817. https://doi.org/10.3390/microorganisms8060817

Khatri DK, Tiwari DN, & Bariya HS. 2017. Chitinolytic efficacy and secretion of cell wall-degrading enzymes from Trichoderma spp. in response to phytopathological fungi. J. Appl. Biol. Biotech. 5(6): 1–8. https://doi.org/10.7324/JABB.2017.50601

Kumar A, Shrivastava D, Dixit M, Meena SK, Suman, & Prasad A. 2022. Trichoderma: A Plant Growth Promoting Fungi. Gorteria Journal. 34(6): 60–76.

Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, Hamss HE, Belabess Z, & Barka FA. 2022. Biological control of plant pathogens: A global perspective. Microorganisms. 10(3): 596. https://doi.org/10.3390/microorganisms10030596

Lakhdari W, Azher A, Mlik R, Benyahia I, Mekhadmi NE, Guezoul O, Hammi H, & Dehliz A. 2022. Gibberellin production by antagonistic fungus strains (Trichoderma harzianum). Revue des BioRessources. 12: 74–81.

Liu K, McInroy JA, Hu C-H, & Kloepper JW. 2018. Mixtures of plant-growth-promoting rhizobacteria enhance biological control of multiple plant diseases and plant-growth promotion in the presence of pathogens. Plant Dis. 102(1): 67–72. https://doi.org/10.1094/PDIS-04-17-0478-RE

Loc NH, Huy ND, Quang HT, Lan TT, & Ha TTT. 2020. Characterisation and antifungal activity of extracellular chitinase from a biocontrol fungus, Trichoderma asperellum PQ34. Mycology. 11(1): 38–48. https://doi.org/10.1080/21501203.2019.1703839

Lord EM & Russell SD. 2002. The mechanisms of pollination and fertilization in plants. Annu. Rev. Cell. Develop. Biol. 18: 81–105. https://doi.org/10.1146/annurev.cellbio.18.012502.083438

Mahdikhani M. 2016. Genetic variability among Fusarium oxysporum isolates from melon (Cucumis melo) in Qazvin Province, Iran. Hortic. Biotechnol. 2: 1–7. https://doi.org/10.19071/jhcbt.2016.v2.2996

Manchali S, Murthy KNC, Vishnuvardana, & Patil BS. 2021. Nutritional composition and health benefits of various botanical types of melon (Cucumis melo L.). Plants. 10(9): 1755. https://doi.org/10.3390/plants10091755

Marín–Guirao JI, Rodríguez–Romera P, Lupión–Rodríguez B, Camacho–Ferre F, Tello–Marquina J. 2016. Effect of Trichoderma on horticultural seedlings growth promotion depending on inoculum and substrate type. J. Appl. Microbiol. 121(4): 1095–1102. https://doi.org/10.1111/jam.13245

Mishra J & Arora NK. 2018. Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Appl. Soil. Ecol. 125: 35–45. https://doi.org/10.1016/j.apsoil.2017.12.004

Mondo JM, Agre PA, Asiedu R, Akoroda MO, & Asfaw A. 2022. Optimum time for hand pollination in yam (Dioscorea spp.). PLoS One. 17(8): e0269670. https://doi.org/10.1371/journal.pone.0269670

Ordentlich A, Wiesman Z, Gottlieb HE, Cojocaru M, & Chet I. 1992. Inhibitory furanone produced by the biocontrol agent Trichoderma harzianum. Phytochem. 31(2): 485–486. https://doi.org/10.1016/0031-9422(92)90021-H

Orozco-Mosqueda MdC, Santoyo G, & Glick BR. 2023. Recent advances in the bacterial phytohormone modulation of plant growth. Plants. 12(3): 606. https://doi.org/10.3390/plants12030606

Paraschivu M, Cotuna O, & Paraschivu M. 2013. The use of the area under the disease progress curve (AUDPC) to assess the epidemics of Septoria tritici in winter wheat. Res. J. Agric. Sci. 45(1): 193–201.

Pathak VM, Verma VK, Rawat BS, Kaur B, Babu N, Sharma A, Dewali S, Yadav M, Kumari R, Singh S, Mohapatra A, Pandey V, Rana N, & Cunill JM. 2022. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front Microbiol. 13: 962619. https://doi.org/10.3389/fmicb.2022.962619

Pigeot I, Schäfer J, Röhmel J, & Hauschke D. 2003. Assessing non-inferiority of a new treatment in a three-arm clinical trial including a placebo. Stat. Med. 22(6): 883–899. https://doi.org/10.1002/sim.1450

Poveda J & Eugui D. 2022. Combined use of Trichoderma and beneficial bacteria (mainly Bacillus and Pseudomonas): Development of microbial synergistic bio-inoculants in sustainable agriculture. Biol. Control. 176: 105100. https://doi.org/10.1016/j.biocontrol.2022.105100

Reino JL, Guerrero RF, Hernández-Galán R, & Collado IG. 2008. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem. Rev. 7(1): 89–123. https://doi.org/10.1007/s11101-006-9032-2

Seblani R, Keinath AP, & Munkvold G. 2023. Gummy stem blight: One disease, three pathogens. Mol. Plant Pathol. 24(8): 825–837. https://doi.org/10.1111/mpp.13339

Silva PHV, Souza AGV, de Araujo LD, Frezarin ET, de Souza GVL, da Silveira CM, & Rigobelo EC. 2023. Trichoderma harzianum and Bacillus subtilis in association with rock powder for the initial development of maize plants. Agronomy. 13(3): 872. https://doi.org/10.3390/agronomy13030872

Soesanto L, Mugiastuti E, & Rahayuniati RF. 2010. Kajian mekanisme antagonis Pseudomonas fluorescens P60 terhadap Fusarium oxysporum f. sp. lycopersici pada tanaman tomat in vivo [Antagonistic mechanisms study of Pseudomonas fluorescens P60 on Fusarium oxysporum f.sp. lycopersici of tomato in vivo]. J. Trop. Plant Pests Dis. 10(2): 108–115. https://doi.org/10.23960/j.hptt.210108-115

Soesanto L, Mugiastuti E, & Rahayuniati RF. 2011. Biochemical characteristic of Pseudomonas fluorescens P60. J. Biotech. Biodiv. 2: 19–26.

Soesanto L, Mugiastuti E, & Rahayuniati RF. 2013. Aplikasi formula cair Pseudomonas fluorescens P60 untuk menekan penyakit virus cabai merah [Liquid formula application of Pseudomonas fluorescens P60 for suppressing viral disease of chili pepper]. Jurnal Fitopatologi Indonesia. 9(6): 179–185. https://doi.org/10.14692/jfi.9.6.179

Soesanto L, Hiban A, & Suharti WS. 2019a. Application of Bio P60 and Bio T10 alone or in combination against stem rot of pakcoy. J. Trop Hort. 2(2): 38–44. https://doi.org/10.33089/jthort.v2i2.20

Soesanto L, Mugiastuti E, & Khoeruriza. 2019b. Granular formulation test of Pseudomonas fluorescens P60 for controling bacterial wilt (Ralstonia solanacearum) of tomato in planta. AGRIVITA J. Agric Sci. 41(3): 513–523. https://doi.org/10.17503/agrivita.v41i3.2318

Soesanto L, Mugiastuti E, Suyanto A, & Rahayuniati RF. 2020. Application of raw secondary metabolites from two isolates of Trichoderma harzianum against anthracnose on red chili pepper in the field. J. Trop. Plant Pests Dis. 20(1): 19–27. https://doi.org/10.23960/j.hptt.12019-27

Soesanto L, Pradiptha CN, & Mugiastuti E. 2021. Raw Secondary metabolites of chitosan-enriched Pseudomonas fluorescens P60 to control corn sheath blight. Biosaintifika: J Biol Biol Edu. 13(1): 113–120. https://doi.org/10.15294/biosaintifika.v13i1.28775

Soesanto L, Ikbal DH, Mugiastuti E, Sastyawan MWR, & Tamad. 2022. Evaluation of effervescent tablet formulation of Trichoderma harzianum raw secondary metabolites toward Fusarium wilt on pepper. AGRIVITA J. Agric Sci. 44(2): 303–311. https://doi.org/10.17503/agrivita.v44i2.3699

Soesanto L, Saputra DA, Sastyawan MWR, Mugiastuti E, Suprapto A, & Rahayuniati RF. 2023. Secondary metabolites of the granular form of Pseudomonas fluorescens P60 and its applications to control tomato bacterial wilt. Biodiversitas. 24(4): 2475–2482. https://doi.org/10.13057/biodiv/d240463

Stewart JE, Turner AN, & Brewer MT. 2015. Evolutionary history and variation in host range of three Stagonosporopsis species causing gummy stem blight of cucurbits. Fungal Biol. 119(5): 370–382. https://doi.org/10.1016/j.funbio.2014.12.008

Tang FHM, Lenzen M, AMcBratney A, & Maggi F. 2021. Risk of pesticide pollution at the global scale. Nat. Geosci. 14: 206–210. https://doi.org/10.1038/s41561-021-00712-5

Temanggung Regency. 2021. Bansari District Profile. https://bansari-bansari.temanggungkab.go.id. Accessed 28 July 2023.

Thakur M, Bhattacharya S, Khosla PK, & Puri S. 2019. Improving production of plant secondary metabolites through biotic and abiotic elicitation. J. App. Res. Medic. Arom. Plants. 12: 1–12. https://doi.org/10.1016/j.jarmap.2018.11.004

Thambugala KM, Daranagama DA, Phillips AJL, Kannangara SD, & Promputtha I. 2020. Fungi vs. fungi in biocontrol: An overview of fungal antagonists applied against fungal plant pathogens. Front. Cell. Infect. Microbiol. 10: 604923. https://doi.org/10.3389/fcimb.2020.604923

Tsukanova KA, ?h?b?t?r VK, Meyer JJM, & Bibikova TN. 2017. Effect of plant growth-promoting Rhizobacteria on plant hormone homeostasis. South Afr. J. Bot. 113: 91–102. https://doi.org/10.1016/j.sajb.2017.07.007

van der Plank JE. 1963. Plant Diseases: Epidemics and Control. Academic Press, New York, USA.

Wang J, Liu L, Wang X, Yang S, Zhang B, Li P, Qiao C, Deng M, & Liu W. 2017. High night-time humidity and dissolved organic carbon content support rapid decomposition of standing litter in a semi-arid landscape. Func. Ecol. 31(8): 1659–1668. https://doi.org/10.1111/1365-2435.12854

Yu Z, Lu T, & Qian H. 2023. Pesticide interference and additional effects on plant microbiomes. Sci. Total Environ. 888: 164149. https://doi.org/10.1016/j.scitotenv.2023.164149

Yu X, Zhang X, Zhang J, Zhang L, Jiao Y, Guo L, Wang J, Wang X, Zhao J, & Xiang W. 2022. Mixtures of suppressive bacteria enhance biological control of tomato bacterial wilt. Biol. Control. 170: 104937. https://doi.org/10.1016/j.biocontrol.2022.104937

Zhang F, Huo Y, Cobb AB, Luo G, Zhou J, Yang G, Wilson GWT, & Zhang Y. 2018. Trichoderma biofertilizer links to altered soil chemistry, altered microbial communities, and improved grassland biomass. Front. Microbiol. 9: 2018. https://doi.org/10.3389/fmicb.2018.00848

Zhang W, Cai P, Cheng G, & Zhang Y. 2022. A brief review of phenolic compounds identified from plants: Their extraction, analysis, and biological activity. Nat. Prod. Comm. 17(1): 1–14. https://doi.org/10.1177/1934578X211069721

Zhao X, Cui H, Wang Y, Sun C, Cui B, & Zeng Z. 2018. Development strategies and prospects of Nano-based smart pesticide formulation. J. Agric. Food Chem. 66(26): 6504–6512. https://doi.org/10.1021/acs.jafc.7b02004