Development of Bacillus thuringiensis-based liquid and paste formulations for controlling invasive pest species Spodoptera frugiperda J. E. Smith

Main Article Content

Achmad Djunaedy
Syaiful Khoiri
Dheananda Fyora Hermansyah Azari
Zahratus Syamsiyah
Gita Pawana
Dita Megasari
Giyanto

Abstract

Spodoptera frugiperda J.E. Smith (Spodoptera: Noctuidae) is an invasive pests of maize that has been reported around the world. Control efforts using biological agents continue to be developed, including the use of entomopathogen bacteria such as Bacillus thuringiensis. To boost the efficacy and efficiency of biological control, formulations are required. The objective of this study was to develop biopesticide formulations and evaluate their efficacy. The research was carried out by formulating B. thuringiensis strain BtJ2 (1010 cfu mL -1) in liquid and paste formulations. The effectiveness of the formulations was evaluated using the feed dipping method. The results showed that paste formulations at a concentration of 10% caused 100% mortality, whereas the liquid formulation resulted in 85% mortality. The LC90 for the paste formulation was 6.66%, while the LC90 for the liquid formulation was 12.90%. Both the liquid and paste formulations had similar effects on mortality and viability. Based on the LC90 and LT90, the paste formulation was more efficient and faster in killing S. frugiperda than the liquid formulation. The results of this study provide recommendations that B. thuringiensis as a bioinsecticide is better formulated in a paste than in a liquid form.

Article Details

How to Cite
(1)
Djunaedy, A.; Khoiri, S.; Azari, D. F. H.; Syamsiyah, Z.; Pawana, G.; Megasari, D.; Giyanto. Development of Bacillus Thuringiensis-Based Liquid and Paste Formulations for Controlling Invasive Pest Species Spodoptera Frugiperda J. E. Smith. J Trop Plant Pests Dis 2024, 24, 154-161.


Section
Articles

References

Arsi A, Pujiastuti Y, Herlinda S, Suparman SHK, & Gunawan B. 2019. Efikasi bakteri entomopatogen Bacillus thuringiensis Barliner sebagai agens hayati Spodoptera litura Fabricus pada lahan pasang surut dan rawa lebak [Efficacy of entomopathogenic bacteria Bacillus thuringiensis Berliner as biocontrol agent against Spodoptera litura Fabricus in tidal and swampy areas]. In: Herlinda S, Lakitan B, Budiharjo W, Effendi I, Adriani D, Wijayant i M, Anggana M, Wulandari, Yonarta D, Nunilahwati H, & Tanbiyaskur (Eds.). Prosiding Seminar Nasional Lahan Suboptimal 2019. pp. 254-263. Unsri Press, Palembang. https://conference.unsri.ac.id/index.php/lahansuboptimal/article/view/1540. Accessed 19 July 2023.

Ashok K, Balasubramani V, Kennedy JS, Geethalakshmi V, Jeyakumar P, & Sathiah N. 2021. Effect of elevated temperature on the population dynamics of fall armyworm, Spodoptera frugiperda. J. Environ. Biol. 42: 1098–1105. https://doi.org/10.22438/jeb/42/4(SI)/MRN-1525a

Asmaliyah, Sumardi, & Musyafa. 2010. Uji toksisitas ekstrak daun Nicolaia atropurpurea Val. terhadap serangga hama Spodoptera litura Fabricus (Lepidoptera: Noctuidae) [Toxicity assay of Nicolia atropurpurea leaf extract against armyworm Spodoptera litura]. Jurnal Penelitian Hutan Tanaman. 7(5): 253–263. https://doi.org/10.20886/jpht.2010.7.5.253-263

Bajracharya ASR, Bhat B, & Sharma P. 2020. Spatial and seasonal distribution of fall armyworm, Spodoptera frugiperda (J.E. Smith) in Nepal. J. Plant Prot. Soc. 6: 192–201. https://doi.org/10.3126/jpps.v6i0.36486

Balfas R & Willis M. 2009. Pengaruh ekstrak tanaman obat terhadap mortalitas dan kelangsungan hidup Spodoptera litura F. (Lepidoptera, Noctuidae) [Effect of medicinal plant extract on mortality and survival of Spodoptera litura F. (Lepidoptera, Noctuidae)]. Bul. Littro. 20(2): 148–156.

Bharti V & Ibrahim S. 2020. Biopesticides: production, formulation and application systems. Int. J. Curr. Microbiol. App. Sci. 9(10): 3931–3946. https://doi.org/10.20546/ijcmas.2020.910.453

Boaventura D, Martin M, Pozzebon A, Mota-Sanchez D, & Nauen R. 2020. Monitoring of target-site mutations conferring insecticide resistance in Spodoptera frugiperda. Insects. 11(8): 545; https://doi.org/10.3390/insects11080545

Cokola MC, Mugumaarhahama Y, Noël G, Bisimwa EB, Bugeme DM, Chuma GB, Ndeko AB, & Francis F. 2020. Bioclimatic zonation and potential distribution of Spodoptera frugiperda (Lepidoptera: Noctuidae) in South Kivu Province, DR Congo. BMC Ecol. 20(66): 1–13. https://doi.org/10.1186/s12898-020-00335-1

da Silva DM, Bueeno AdF, Andrade K, Stecca CdS, Neves PMOJ, & de Oliveira MCN. 2016. Biology and nutrition of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on different food sources. Sci. Agric. 74(1): 18–31. https://doi.org/10.1590/1678-992X-2015-0160

de Oliveira JL, Gómez I, Sánchez J, Soberón M, Polanczyk RA, & Bravo A. 2022. Performance of microencapsulated Bacillus thuringiensis Cry pesticidal proteins. Research Square. https://doi.org/10.21203/rs.3.rs-1949207/v1

FAO & CABI. 2019. Community-Based Fall Armyworm (Spodoptera frugiperda) Monitoring, Early Warning and Management: Training of Trainers Manual. First Edition. The Food and Agriculture Organization of the United Nations & CAB International, USA. https://www.cabi.org/wp-content/uploads/ToT-manual.pdf. Accessed 22 December 2022.

Fravel DR, Connick Jr WJ, & Lewis JA. 1998. Formulation of microorganisms to control plant diseases. In: Burges HD (ed.). Formulation of Microbial Biopesticides. pp. 187–202. Springer: Dordrecht. https://doi.org/10.1007/978-94-011-4926-6_5

Gazali A, Ilhamiyah I, & Jaelani A. 2017. Bacillus thuringiensis Biologi, Isolasi, Perbanyakan dan Cara Aplikasinya [Bacillus thuringiensis Biology, Isolation, Propagation and Application Methods]. Pustaka Banua, Banjarmasin.

Habazar T, Resti Z, Yanti Y, Sutoyo, & Imelda. 2015. Formulasi bakteri endofit akar kedelai untuk pengendalian pustul bakteri [Formulation of bacterial endophytes from soybean root to control bacterial pustule]. Jurnal Fitopatologi Indonesia. 11(2): 51–58. https://doi.org/10.14692/jfi.11.2.51

He H, Qin X, Dong F, Ye J, Xu C, Zhang H, Liu Z, Lv X, Wu Y, Jiang X, & Cheng X. 2020. Synthesis, characterization of two matrine derivatives and their cytotoxic effect on Sf9 cell of Spodoptera frugiperda. Sci. Rep. 10: 17999. https://doi.org/10.1038/s41598-020-75053-1

Hidayati NN, Yuliani, & Kuswanti N. 2013. Pengaruh ekstrak daun suren dan daun mahoni terhadap mortalitas dan aktivitas makan ulat daun (Plutella xylostella) pada tanaman kubis [Effect of suren leaf and mahogany leaf extracts on mortality and feeding activity of leaf caterpillars (Plutella xylostella) on Cabbage Plants]. LenteraBio: Berkala Ilmiah Biologi. 2(1): 95–99. https://ejournal.unesa.ac.id/index.php/lenterabio/article/view/1407

Kebede M & Shimalis T. 2019. Out-break, distribution and management of fall armyworm, Spodoptera frugiperda J.E. Smith in Africa: the status and prospects. Am. J. Agric. Res. 4: 43.

Kumela T, Simiyu J, Sisay B, Likhayo P, Mendesil E, Gohole L, & Tefera T. 2019. Farmers’ knowledge, perceptions, and management practices of the new invasive pest, fall armyworm (Spodoptera frugiperda) in Ethiopia and Kenya. Int. J. Pest. Manag. 65(1): 1–9. https://doi.org/10.1080/09670874.2017.1423129

Leland JE & Behle RW. 2004. Formulation of the entomopathogenic fungus, Beauveria bassiana, with resistance to UV degradation for control of tarnished plant bug, Lygus lineolaris. Beltwide Cotton Conferences, Vol. 2. pp. 1800–1808. National Cotton Council Memphis, TN.

Megasari D & Khoiri S. 2021. Tingkat serangan ulat grayak tentara Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae) pada pertanaman jagung di Kabupaten Tuban, Jawa Timur, Indonesia [Attack rate of fall army worms Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae) on maize in Tuban District, East Java, Indonesia]. Agrovigor: Jurnal Agroekoteknologi. 14(1): 1–5. https://doi.org/10.21107/agrovigor.v14i1.9492

Milano P, Filho EB, Parra JRP, & Consoli FL. 2008. Influência da temperatura na freqüência de cópula de Anticarsia gemmatalis Hübner e Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) [Temperature effects on the mating frequency of Anticarsia gemmatalis Hüebner and Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae)]. Neotrop. Entomol. 37(5): 528–535. https://doi.org/10.1590/S1519-566X2008000500005

Motta ACQ. 2021. Sublethal Effects of Bacillus thuringiensis Berliner in Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Dissertation. UNESP. Campus De Jaboticabal.

Muckoya VA, Nomngongo PN, & Ngila JC. 2020. Determination of organophosphorus pesticides in wastewater samples using vortex-assisted dispersive liquid–liquid microextraction with liquid chromatography–mass spectrometry. Int. J. Environ. Sci. Technol. 17: 2325–2336. https://doi.org/10.1007/s13762-020-02625-z

Paredes-Sánchez FA, Rivera G, Bocanegra-García V, Martínez-Padrón HY, Berrones-Morales M, Niño-García N, & Herrera-Mayorga V. 2021. Advances in control strategies against Spodoptera frugiperda. A review. Molecules. 26(18): 5587. https://doi.org/10.3390/molecules26185587

Pinto LMN, Dörr NC, Ribeiro APA, de Salles SM, de Oliveira JV, Menezes VG, & Fiuza LM. 2012. Bacillus thuringiensis monogenic strains: screening and interactions with insecticides used against rice pests. Braz. J. Microbiol. 43(2): 618–626. https://doi.org/10.1590%2FS1517-83822012000200025

Salaki CL & Watung J. 2022. Aplikasi biopestisida Bacillus thuringiensis isolat lokal untuk mengendalikan hama Atherigona exigua pada tanaman jagung [Biopesticide application of Bacillus thuringiensis local isolate to control Atherigona exigua pest on corn plants]. Jurnal Agroekoteknologi Terapan. 3(2): 250–256. https://doi.org/10.35791/jat.v3i2.44328

Schünemann R, Knaak N, & Fiuza LM. 2014. Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. Int. Sch. Res. Notices. 2014: 135675. https://doi.org/10.1155/2014/135675

Sharanabasappa SD, Kalleshwaraswamy CM, Maruthi MS, & Pavithra HB. 2018. Biology of invasive fall army worm Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) on maize. Indian J. Entomol. 80(3): 540–543. https://doi.org/10.5958/0974-8172.2018.00238.9

Shylesha AN, Jalali SK, Gupta A, Varshney R, Venkatesan T, Shetty P, Ojha R, Ganiger PC, Navik O, Subaharan K, Bakthavatsalam N, Ballal CR, & Raghavendra A . 2018. Studies on new invasive pest Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) and its natural enemies. Journal of Biological Control. 32(3): 145–151. https://10.18311/jbc/2018/21707

Sisay B, Simiyu J, Mendesil E, Likhayo P, Ayalew G, Mohamed S, Subramanian S, & Tefera T. 2019. Fall armyworm, Spodoptera frugiperda infestations in East Africa: assessment of damage and parasitism. Insects. 10(7): 195. https://doi.org/10.3390/insects10070195

Stevenson A, Hamill PG, Medina Á, Kminek G, Rummel JD, Dijksterhuis J, Timson DJ, Magan N, Leong SLL, & Hallsworth JE. 2017. Glycerol enhances fungal germination at the water?activity limit for life. Environ. Microbiol. 19(3): 947–967. https://doi.org/10.1111/1462-2920.13530

Tamez-Guerra P, McGuire MR, Behle RW, Shasha BS, & Wong LJG. 2000. Assessment of microencapsulated formulations for improved residual activity of Bacillus thuringiensis. J. Econ. Entomol. 93(2): 219–225. https://doi.org/10.1603/0022-0493-93.2.219

Turhadi, Bedjo, & Suharjono. 2020. Pengaruh ekstrak daun bintaro (Cerbera odollam) terhadap waktu berhenti makan dan mortalitas larva ulat grayak (Spodoptera litura) [The effect of bintaro leaf extract (Cerbera odollam) on the time to stop eating and mortality of armyworm larvae (Spodoptera litura)]. Agro Bali: Agricultural Journal. 3(2): 136–143. https://doi.org/10.37637/ab.v3i2.572

Umaru FF & Simarani K. 2020. Evaluation of the potential of fungal biopesticides for the biological control of the seed bug, Elasmolomus pallens (Dallas) (Hemiptera: Rhyparochromidae). Insects. 11(5): 277. https://doi.org/10.3390/insects11050277

Wardati I & Erawati DN. 2015. Uji formulasi Beauveria bassiana isolat lokal sebagai pengendali hayati hama utama kapas [Formulation assay of local isolate Beauveria bassiana as a biological control of the main cotton pest]. Jurnal Ilmiah Inovasi. 15(1): 21–26. https://doi.org/10.25047/jii.v15i1.56

Yan XR, Wang ZY, Feng SQ, Zhao ZH, & Li ZH. 2022. Impact of temperature change on the fall armyworm, Spodoptera frugiperda under global climate change. Insects. 13(11): 981. https://doi.org/10.3390/insects13110981

Yulensri Y. 2020. Efektifitas formulasi cair konsorsium bakteri sebagai pengendali hama dan penyakit pada padi sawah organik [The effectiveness of liquid consortium bacterial formulations as pest and disease control in organic paddy fields]. Jurnal Ilmiah Inovasi. 20(3): 35–40. https://doi.org/10.25047/jii.v20i3.2366

Zhang L, Qiu S, Huang T, Huang Z, Xu L, Wu C, Gelbi? I, Guan X. 2013. Effect of chemical additives on Bacillus thuringiensis (Bacillales: Bacillaceae) against Plutella xylostella (Lepidoptera: Pyralidae). J Econ Entomol. 106(3): 1075-1080. https://doi.org/10.1603/EC12288

Zulfiana D, Krishanti NPRA, Wikantyoso B, & Zulfitri A. 2017. Bakteri entomopatogen sebagai agen biokontrol terhadap larva Spodoptera litura (F.) [Entomopathogenic bacteria as biocontrol agent against Spodoptera litura (F.) larvae]. Berita Biologi. 16(1): 13–21. https://doi.org/10.14203/beritabiologi.v16i1.2153