Effect of genetic modified maize contained Cry1Ab gene on the arthropods abundance and diversity in limited test field

Main Article Content

Lina Herlina
Bonjok Istiaji

Abstract

In Indonesia, transgenic products are still considered innovative, and genetically modified (GM) maize has stayed on the market while its impact on environmental biosafety is now being evaluated. Bt corn has been recognized as one of the solutions to the problem of Asian corn and cob borers to preserve maize production. Therefore, this study aimed to investigate the effect of Bt corn on arthropod richness and diversity in a limited testing field using a randomized block design with four different maize varieties as treatments in six replications. The significant findings showed that Bt corn had no significant influence on the diversity, evenness, and abundance index (Margalef and Meinhinick Index) in the limited testing fields, which were all greater at 85 days after plant (DAP) than 60 DAP. Based on the evenness and abundance index, we conclude that Bt corn does not harm the community of existing arthropods.

Article Details

How to Cite
(1)
Herlina, L.; Istiaji, . B. . Effect of Genetic Modified Maize Contained Cry1Ab Gene on the Arthropods Abundance and Diversity in Limited Test Field. J Trop Plant Pests Dis 2023, 23, 71-82.


Section
Articles

References

Arpaia S, Smagghe G, & Sweet JB. 2021. Biosafety of bee pollinators in genetically modified agroecosystems: Current approach and further development in the EU. Pest. Manag. Sci. 77(6): 2659–2666. https://doi.org/10.1002/ps.6287

Azadi H, Taube F, & Taheri F. 2017. Co-existence of GM, conventional and organic crops in developing countries: Main debates and concerns. Crit. Rev. Food. Sci. Nutr. 58(16): 2677–2688. https://doi.org/10.1080/10408398.2017.1322553

Baumgarte S, & Tebbe CC. 2005. Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere. Molecular Ecology. 14(8): 2539-51. https://doi.org/10.1111/j.1365294x.2005.02592.x

Borror DJ, Triplehorn CA, & Johnson NF. 1996. Pengenalan Pelajaran Serangga. Edisi Keenam. [An introduction to the study of insects. Sixth Edition. Translated by Partosoedjono S]. In: Brotowidjoyo MD (Ed.). Mada University Press. Yogyakarta.

Campos SO, Santana IV, Silva C, Santos-Amaya OF, Guedes RNC, & Pereira EJG. 2019. Btinduced hormesis in Bt-resistant insects: Theoretical possibility or factual concern? Ecotoxicol. Environ. Saf. 183: 109577. https://doi.org/10.1016/j.ecoenv.2019.109577

Chen Y, Ren M, Pan L, Liu B, Guan X, & Tao J. 2022. Impact of transgenic insect-resistant maize HGK60 with Cry1Ah gene on community components and biodiversity of arthropods in the fields. PLoS ONE. 17(6): e0269459. https://doi.org/10.1371/journal.pone.0269459

Estiati A & Herman M. 2015. Regulasi keamanan hayati produk rekayasa genetik di Indonesia [Biosafety regulation of genetically modified products in Indonesia]. Analisis Kebijakan Pertanian. 13(2): 129–146.

Frank JH & Thomas MC. 2011. Rove beetles of the world, Staphylinidae (Insecta: Coleoptera: Staphylinidae). EENY115/IN272, rev. 12/2002, EDIS, 2002(8). https://doi.org/10.32473/edisin272-2002

Frizzas MR, de Oliveira CM, & Omoto C. 2017. Diversity of insects under the effect of Bt maize and insecticides. Arq. Inst. Biol. 84: e0062015. https://doi.org/10.1590/1808-1657000062015

Gibson GAP, Huber JT, & Woolley JB. 1997. Annotated Keys to the Genera of Nearctic Chalcidoidea (Hymenoptera). NRC Research Press. Canada.

Huang YX & Qin DZ. 2017. The complete mitochondrial genome sequence of the corn planthopper, Peregrinus maidis (Hemiptera: Fulgoroidea). Mitochondrial DNA Part B. Resources. 2(2): 783–784. https://doi.org/10.1080/23802359.2017.1398605

ISAAA. 2017. Global Status of Commercialized Biotech/GM Crops: 2017. Biotech Crop Adoption Surges as Economic Benefits Accumulate in 22 Years. ISAAA Brief No. 53. ISAAA: Ithaca, NY. https://www.isaaa.org/resources/publications/briefs/53/. Accessed 17 Agustus 2022.

ISAAA. 2018. Global Status of Commercialized Biotech/GM Crops in 2018: Biotech Crops Continue to Help Meet the Challenges of Increased Population and Climate Change. ISAAA Brief No. 54. ISAAA: Ithaca, NY. https://www.isaaa.org/resources/publications/briefs/54/executivesummary/pdf/B54-ExecSum-Engli sh.pdf. Accessed 17 August 2022.

Japoshvili G & Hansen LO. 2017. Chalcid wasps of the family Encyrtidae (Hymenoptera, Chalcidoidea) from Oslo Municipality, Norway, with description of a new species. Nor. J. Entomol. 64(1): 53–60. http://urn.nb.no/URN:NBN:no-61182

Jiang F, Zhang T, Bai S, Wang Z, & He K. 2016. Evaluation of Bt corn with pyramided genes on efficacy and insect resistance management for the Asian corn borer in China. PLoS ONE.11(12): e0168442. https://doi.org/10.1371/journal.pone.0168442

Kamthan A, Chaudhuri A, Kamthan M, & Dattal A. 2016. Genetically modified (GM) crops: milestones and new advances in crop improvement. Theor. Appl. Genet. 129(9): 1639–1655. https://doi.org/10.1007/s00122-016-2747-6

Kleinjans HAW, van Keulen SJ, Blacquière T, Booij CJH, Hok-A-Hin CH, Cornelissen ACM, & van Dooremalen C. 2012. The possible role of honey bees in the spread of pollen from field trials. Plant Research International. https://cogem.net/publicatie/the-possible-role-of honeybees-in-the-spread-of-pollen-from-field-trials/. Accessed 10 May 2023.

Kumar K, Gambhir G, Dass A, Tripathi AK, Singh A, Jha AK, Yadava P, Choudhary M, & Rakshit S. 2020. Genetically modified crops: Current status and future prospects. Planta. 251(91): 1–27. https://doi.org/10.1007/s00425-020-03372-8

Li G, Feng H, Ji T, Huang J, & Tian C. 2021. What type of Bt corn is suitable for a region with diverse lepidopteran pests: A laboratory evaluation. GM Crops Food. 12(1): 115–124. https://doi.org/10.1080/21645698.2020.1831728

Magurran AE. 1988. Ecological Diversity and Its Measurement. Springer Dordrecht. Princeton University Press, Princeton, N.J.

Nawaz MA, Mesnage R, Tsatsakis AM, Golokhvast KS, Yang SH, Antoniou MN, & Chung G. 2019. Addressing concerns over the fate of DNA derived from genetically modified food in the human body: A review. Food Chem. Toxicol.124: 423–430. https://doi.org/10.1016/j.fct.2018.12.030

Noyes JS. 2019. Universal Chalcidoidea Database. World Wide Web electronic publication. http://www.nhm.ac.uk/chalcidoids. Accessed18 May 2020.

Pacheco ID, Walling LL, & Atkinson PW. 2022. Gene editing and genetic control of Hemipteran pests: Progress, challenges and perspectives. Front Bioeng. Biotechnol. 10: 900785. https://doi.org/10.3389/fbioe.2022.900785

Ritanti IR, & Haryadi NT. 2021. Biologi kumbang tomcat (Paederus fuscipes Curtis) (Coleoptera: Staphylinidae) sebagai predator [The biology of tomcat beetle (Paederus fuscipes Curtis) (Coleoptera: Staphylinidae) as predator]. J. HPT. 9(2): 35–40. https://doi.org/10.21776/ub.jurnalhpt.2021.009.2.1

Schmidt S, Hamid H, Ubaidillah R, Ward S, & Polaszek A. 2019. A review of the Indonesian species of the family Signiphoridae (Hymenoptera, Chalcidoidea), with description of three new species. ZooKeys. 897: 29–47. https://doi.org/10.3897/zookeys.897.38148

Sultana R, Sanam S, Kumar S, Shamsudeen RSM, & Soomro F. 2021. A review of Gryllidae (Grylloidea) with the description of one new species and four new distribution records from the Sindh Province, Pakistan. ZooKeys. 1078: 1–33. https://doi.org/10.3897/zookeys.1078.69850

Sutikno A, Rasyad A, Amin B, & Mahatma R. 2021. Faktor lingkungan yang mempengaruhi keberadaan hama yang mengganggu penghuni rumah di Kota Pekanbaru [Environmental factors that influence the presence of pests that disturb residents in Pekanbaru City]. Dinamika Lingkungan Indonesia. 8(1): 65–72. https://doi.org/10.31258/dli.8.1.p.65-72

Szabo B, Seres A, & Bakonyi G. 2017. Long-term consumption and food replacement of nearisogenic by Bt maize alter life-history traits of Folsomia candida Willem 1902 (Collembola). Appl. Ecol. Environ. Res. 15(4): 1275–1286.

Tabashnik BE & Carrière Y. 2017. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat. Biotechnol. 35(10): 926–935. https://doi.org/10.1038/nbt.3974

Turnbull C, Lillemo M, & Hvoslef-Eide TAK. 2021. Global regulation of genetically modified crops amid the gene edited crop boom – A review. Front Plant Sci. 12: 630396. https://doi.org/10.3389/fpls.2021.630396

Wang M & Guan X. 2020. The effects of phytase transgenic maize on the community components and diversity of arthropods. J. Asia Pac. Entomol. 23(4): 1228–1234. https://doi.org/10.1016/j.aspen.2020.09.001

Xiao Y & Wu K. 2019. Recent progress on the interaction between insects and Bacillus thuringiensis crops. Phil. Trans. R. Soc. B. 374(1767): 20180316. https://doi.org/10.1098/rstb.2018.0316

Yin JQ, Wang DM, Liang JG, & Song XY. 2022. Negligible impact of drought-resistant genetically modified maize on arthropod community structure observed in a 2-year field investigation. Plants. 11(8): 1092–1107. https://doi.org/10.3390/plants11081092