Potency of two Trichoderma harzianum isolates in liquid and solid organic formula for controlling bacterial wilt on tomato in the field

Main Article Content

Loekas Soesanto
Murti Wisnu Ragil Sastyawan
Endang Mugiastuti
Nina Nurliana

Abstract

This research aimed to determine the potency of two Trichoderma harzianum isolates in solid and liquid organic formulas to control bacterial wilt and on growth and yield of tomato in the field. This research was carried out at the Laboratory of Plant Protection and the tomato field at Banteran Village, Sumbang Sub-District, Banyumas Regency at altitude of 600 m above sea level for four months. A randomized block design was used with five replicates. The treatments were control, T. harzianum T10, T. harzianum T215, combination of T. harzianum T10 + T. harzianum T215, and bactericide (a.i. 20% streptomycin sulfate). Variables observed were pathosystem components (incubation period, infection rate, disease intensity, and late populations of the antagonists), growth components (plant height, plant fresh and dry weight, and root fresh and dry weight), yield components (number of fruits, fruit weight), and phenolic compounds analysis qualitatively. The results showed that T. harzianum T10 + T. harzianum T215 was effective to suppress the disease as 58.61%. The treatment of T. harzianum T10 + T. harzianum T215 was effective to increase crop height, fresh weight of plants, dry weight of plants, fresh weight of roots, dry weight of roots, number of fruits and fruit weight as 38.86, 35.37, 51.67, 24.78, 37.41, 40.61, and 53.22%, respectively. All treatments could increase phenolic compound content qualitatively.

Article Details

How to Cite
(1)
Soesanto, L.; Sastyawan, M. W. R.; Mugiastuti, E.; Nurliana, N. Potency of Two Trichoderma Harzianum Isolates in Liquid and Solid Organic Formula for Controlling Bacterial Wilt on Tomato in the Field. J Trop Plant Pests Dis 2022, 22, 116-125.


Section
Articles

References

Abera G, Ibrahim AM, Forsido SF, & Kuyu CG. 2020. Assessment on post-harvest losses of tomato (Lycopersicon esculentem Mill.) in selected districts of East Shewa Zone of Ethiopia using a commodity system analysis methodology. Heliyon. 6(4): e03749. https://doi.org/10.1016/j.heliyon.2020.e03749

Akter M, Masum MMI, Bhuiyan MKA, & Jannat R. 2016. Bio-efficacy of Trichoderma-fortified compost in controlling onion diseases and improving yield of onion (Allium cepa L.). Int. J. Biosci. 9(1): 225–236.

Bele AA, Jadhav VM, & Kadam VJ. 2010. Potential of tannnins: a review. Asian J. Plant Sci. 9(4): 209–214. https://doi.org/10.3923/ajps.2010.209.214

Beneduzi A, Ambrosini A, & Passaglia LMP. 2012. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 35(4 Suppl 1): 1044–1051. https://doi.org/10.1590/s1415-47572012000600020

Brugger SD, Baumberger C, Jost M, Jenni W, Brugger U, Mühlemann K. 2012. Automated counting of bacterial colony forming units on agar plates. PLoS ONE. 7(3): e33695. https://doi.org/10.1371/journal.pone.0033695

Buttimer C, McAuliffe O, Ross RP, Hill C, O’Mahony J, & Coffey A. 2017. Bacteriophages and bacterial plant diseases. Front Microbiol. 8: 34. https://doi.org/10.3389/fmicb.2017.00034

Cocaliadis MF, Fernández-Muñoz R, Pons C, Orzaez D, & Granell A. 2014. Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword? J. Exp. Bot. 65(16): 4589–4598. https://doi.org/10.1093/jxb/eru165

Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, & Larsen J. 2016. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol. Ecol. 92(4): fiw036. https://doi.org/10.1093/femsec/fiw036

Debnath S, Chakraborty G, Dutta SS, Chaudhuri SR, Das P, & Saha AK. 2020. Potential of Trichoderma species as biofertilizer and biological control on Oryza sativa L. cultivation. Biotecnol. Veg. 20(1): 1–16.

Enebe MC & Babalola OO. 2019. The impact of microbes in the orchestration of plants’ resistance to biotic stress: a disease management approach. Appl. Microbiol. Biotechnol. 103(1): 9–25. https://doi.org/10.1007/s00253-018-9433-3

Grenni P, Ancona V, & Caracciolo AB. 2018. Ecological effects of antibiotics on natural ecosystems: a review. Microchem. J. 136: 25–39. https://doi.org/10.1016/j.microc.2017.02.006

Halifu S, Deng X, Song X, & Song R. 2019. Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests. 10(9): 758. https://doi.org/10.3390/f10090758

Hastopo K, Soesanto L, & Mugiastuti E. 2008. Penyehatan tanah secara hayati di tanah tanaman tomat terkontaminasi Fusarium oxysporum f.sp. lycopersici [Soil health biologically in contaminated tomato soil with Fusarium

oxysporum f.sp. lycopersici]. Jurnal Akta Agrosia. 11(2): 180–187.

Kago KE, Kinyua MZ, Okemo OP, & Muthini MJ. 2016. Bacterial wilt, a challenge in Solanaceous crops production at Kenyan Highlands and Lowlands. WJRR. 3(1): 06–11.

Kulbat K. 2016. The role of phenolic compounds in plant resistance. Biotechnol. Food Sci. 80(2): 97–108.

Latifah A, Kustantinah, & Soesanto L. 2011. Pemanfaatan beberapa isolat Trichoderma harzianum sebagai agensia pengendali hayati penyakit layu Fusarium pada bawang merah in planta [The use of several Trichoderma harzianum isolates as biocontrol agent of fusarium wilt on shallot in planta]. Eugenia. 17(2): 86–94. https://doi.org/10.35791/eug.17.2.2011.4105

Leclerc M, Doré T, Gilligan CA, Lucas P, & Filipe JAN. 2014. Estimating the delay between host infection and disease (incubation period) and assessing its significance to the epidemiology of plant diseases. PLoS ONE. 9(1): e86568. https://doi.org/10.1371/journal.pone.0086568

Merga B & Haji J. 2019. Factors impeding effective crop production in Ethiopia. J. Agric. Sci. 11(10): 98–111. https://doi.org/10.5539/jas.v11n10p98

Mesías FJ, Martín A, & Hernández A. 2021. Consumers’ growing appetite for natural foods: perceptions towards the use of natural preservatives in fresh fruit. Food Res. Int. 150(Part A): 110749. https://doi.org/10.1016/j.foodres.2021.110749

Miljakovi? D, Marinkovi? J, & Baleševi?-Tubi? S. 2020. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms. 8(7): 1037. https://doi.org/10.3390/microorganisms8071037

Mohammed AF, Oloyede AR, & Odeseye AO. 2019. Biological control of bacterial wilt of tomato caused by Ralstonia solanacearum using Pseudomonas species isolated from the rhizosphere of tomato plants. Arch. Phytopathol. Plant Pflanzenschutz. 53(1–2): 1–16. https://doi.org/10.1080/03235408.2020.1715756

Mohsin SM, Nayem SA, & Hore PK. 2016. In-vitro and in-vivo efficiency of some chemicals to manage the bacterial wilt of tomato caused by Ralstonia solanacearum. Int. J. Sustain. Agril. Tech. 12(9): 10–15.

Mukhopadhyay R & Kumar D. 2020. Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egypt. J. Biol. Pest Control. 30: 133. https://doi.org/10.1186/s41938-020-00333-x

Niu B, Wang W, Yuan Z, Sederoff RR, Sederoff H, Chiang VL, & Borriss R. 2020. Microbial interactions within multiple-strain biological control agents impact soil-borne plant disease. Front Microbiol. 11: 585404. https://doi.org/10.3389/fmicb.2020.585404

Oliveira CM, Almeida NO, da Rocha MR, Rezende MH, da Silva Carneiro RG, & Ulhoa CJ. 2020. Anatomical changes induced by isolates of Trichoderma spp. in soybean plants. PLoS ONE. 15(11): e0242480. https://doi.org/10.1371/journal.pone.0242480

Panahian GH, Rahnama K, & Jafari M. 2012. Mass production of Trichoderma spp. and application. Intl. Res. J. Appl. Basic. Sci. 3(2): 292-298.

Peeters N, Guidot A, Vailleau F, & Valls M. 2013. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post?genomic era. Mol Plant Pathol. 14(7): 651–662. https://doi.org/10.1111/mpp.12038

Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, & Xu J. 2019. Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants. 8(2): 34. https://doi.org/10.3390/plants8020034

Ribeiro BD, Barreto DW, & Coelho MAZ. 2013. Application of foam column as green technology for concentration of saponins from sisal (Agave sisalana) and Juá (Ziziphus joazeiro). Braz. J. Chem. Eng. 30(4): 701–709. https://doi.org/10.1590/S0104-66322013000400002

Rufai Y, Isah Y, & Isyaka MS. 2016. Comparative phyto-constituents analysis from the root bark and root core extractives of Cassia ferruginea (Schrad D. C) plant. Sch. J. Agric. Vet. Sci. 3(4): 275–283.

Sapareng S, Ala A, Kuswinanti T, & Rasyid B. 2018. The ability of Trichoderma sp. and Pleurotus sp. for the decomposition of oil palm empty bunches. Pak. J. Biotechnol. 15(2): 543–548.

Schreinemachers P & Tipraqsa P. 2012. Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy. 37(6): 616–626. https://doi.org/10.1016/j.foodpol.2012.06.003

Soesanto L, Mugiastuti E, Rahayuniati RF, & Dewi RS. 2013. Uji kesesuaian empat isolat Trichoderma spp. dan daya hambat in vitro terhadap beberapa patogen tanaman [Compatibility test of four Trichoderma spp. isolates and in vitro inhibition ability on several plant pathogens]. J. HPT Tropika. 13(2): 117–123. https://doi.org/10.23960/j.hptt.213117-123

Soesanto L, Solikhah AN, Mugiastuti E, & Suharti WS. 2020. Application of Trichoderma harzianum T10 liquid formula based on soybean flour against cucumber seedlings damping-off (Pythium sp.). Akta Agrosia. 23(1): 11–18. https://doi.org/10.31186/aa.23.1.11-18

Soesanto L, Mugiastuti E, & Manan A. 2021. The use of alternative liquid media for propagation of pathogenic fungi and their effect on weeds. Biodiversitas. 22(2): 719–725. https://doi.org/10.13057/biodiv/d220224

Statista Research Department. 2021. Production of tomato in Indonesia from 2012 to 2020 (in 1,000 metric tons). https://www.statista.com/statistics/706295/production-of-tomato-in-indonesia/. Accessed 1 February 2022.

Taha MDM, Jaini MFM, Saidi NB, Rahim RA, Shah UKM, & Hashim AM. 2019. Biological control of Erwinia mallotivora, the causal agent of papaya dieback disease by indigenous seed-borne endophytic lactic acid bacteria consortium. PLoS ONE. 14(12): e0224431. https://doi.org/10.1371/journal.pone.0224431

van der Plank JE. 1963. Plant Diseases: Epidemics and Control. Academic Press, New York.

Vidal NP, Adigun OA, Pham TH, Mumtaz A, Manful C, Callahan G, Stewart P, Keough D, & Thomas RH. 2018. The effects of cold saponification on the unsaponified fatty acid composition and sensory perception of commercial natural herbal soaps. Molecules. 23(9): 2356. https://doi.org/10.3390/molecules23092356

Vukeli? ID, Proki? LT, Raci? GM, Peši? MB, Bojovi? MM, Sierka EM, Kalaji HM, & Pankovi? DM. 2021. Effects of Trichoderma harzianum on photosynthetic characteristics and fruit quality of tomato plants. Int. J. Mol. Sci. 22(13): 6961. https://doi.org/10.3390/ijms22136961

Wachjadi M, Soesanto L, Manan A, & Mugiastuti E. 2013. Pengujian kemampuan mikroba antagonis untuk mengendalikan penyakit hawar daun dan layu bakteri pada tanaman kentang di daerah endemis [Ability test of antagonistic microbes for controlling leaf blight and bacterial wilt on potato at Endemic Area]. Agrin. 17(2): 92–102.

Wallis CM & Galarneau ERA. 2020. Phenolic compound induction in plant-microbe and plant-insect interactions: a meta-analysis. Front. Plant Sci. 11: 580753. https://doi.org/10.3389/fpls.2020.580753

Winstead NN & Kelman A. 1952. Inoculation techniques for evaluating resistance to Pseudomonas solanacearum. Phytopath. 42(11): 628–634.

Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, & Lorito M. 2014. Trichoderma-based products and their widespread use in agriculture. Open Mycol. J. 8(Suppl-1, M4): 71–126. https://doi.org/10.2174/1874437001408010071

Wu Q, Sun R, Ni M, Yu J, Li Y, Yu C, Dou K, Ren J, & Chen J. 2017. Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. PLoS ONE. 12(6): e0179957. https://doi.org/10.1371/journal.pone.0179957

Yang H & Luo P. 2021. Changes in photosynthesis could provide important insight into the interaction between wheat and fungal pathogens. Int. J. Mol. Sci. 22(16): 8865. https://doi.org/10.3390/ijms22168865

Yuliar, Nion YA, & Toyota K. 2015. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environ. 30(1): 1–11. https://doi.org/10.1264/jsme2.ME14144

Zehra A, Dubey MK, Meena M, & Upadhyay RS. 2017. Effect of different environmental conditions on growth and sporulation of some Trichoderma species. J. Environ. Biol. 38(2): 197–203. https://doi.org/10.22438/jeb/38/2/MS-251

Zin NA & Badaluddin NA. 2020. Biological functions of Trichoderma spp. for agriculture applications. Ann. Agric. Sci. 65(2): 168–178. https://doi.org/10.1016/j.aoas.2020.09.003