EFFECT OF HOST-LARVAL DIET ON THE HOST ACCEPTANCE AND HOST SUITABILITY OF THE EGG PARASITOID Telenomus remus NIXON (Hymenoptera: Scelionidae) ON Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae)
Main Article Content
Abstract
Effect of host-larval diet on the host acceptance and host suitability of the egg parasitoid Telenomus remus Nixon (Hymenoptera: Scelionidae) on Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae). The life history of parasitoids is an important factor that can determine their ability to attack a host. The type of food consumed by the host can affect the ability of parasitoids such as host searching behavior, host suitability and host acceptance. In this research, we evaluate the effect of the S. frugiperda larvae diet on its suitability of the eggs produced by the adults for the egg parasitoid Telenomus remus. The research was studied on two types of egg masses of S. frugiperda that obtained from the moths that fed with natural or artificial diet during their larval stages. Parasitoid was reared from both types of hosts. An egg mass consisting of 50 S. frugiperda eggs from both types of hosts was exposed to one egg parasitoid female for 24 hours. S. frugiperda eggs then were reared until the parasitoid adult emerged. Each experiment was repeated 20 times. Host acceptance was observed through the host parasitism rate and its parasitization. Meanwhile, the host suitability was observed through the sex ratio of the emerging parasitoids. The results showed that S. frugiperda eggs reared using artificial diet had a higher parasitism rate (99.33%) than those of natural diet (82.53%). In contrast, the level of parasitization of S. frugiperda eggs reared using natural diet was higher (78.30%) than those of artificial diet (48.34%) because the number of emerging T. remus from S. frugiperda eggs reared using natural diet was also higher than those of artificial diet. However, the sex ratio (F:M) of emerging T. remus from S. frugiperda eggs reared using both of diet was female biased.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
BBPOPT. 2019. Hama invasif Spodoptera frugiperda di Indonesia (Hasil verifikasi BBPOPT periode April–Juni 2019). Retrieved from https://berita.bbpopt.id. Accessed on 23 January 2021.
Benelli G, Giunti G, Tena A, Desneux N, Caselli A, & Canale A. 2017. The impact of adult diet on parasitoid reproductive performance. J. Pest Sci. 90(3): 807–823.
Berndt LA & Wratten SD. 2005. Effects of alyssum flowers on the longevity, fecundity, and sex ratio of the leafroller parasitoid Dolichogenidea tasmanica. Biol. Control. 32(1): 65–69.
Blumberg D. 1997a. Encapsulation of parasitoids. In: Ben-Dov Y & Hodgson CF (Eds.). World Crop Pests. pp. 375–387. Elsevier.
Blumberg D. 1997b. Parasitoid encapsulation as a defense mechanism in the Coccoidea (Homoptera) and its importance in biological control. Biol. Control. 8(3): 225–236.
Buchori D, Herawati ED, & Sari A. 2008. Keefektifan Telenomus remus (Nixon) (Hymenoptera: Scelionidae) dalam mengendalikan hama tanaman bawang daun Spodoptera exigua Hübner (Lepidoptera: Noctuidae). J. Entomol Indon. 5(2): 81–95.
CABI. 2019. Spodoptera frugiperda (fall armyworm). Retrieved from https://www.cabi.org/isc/datasheet/53078. Accessed on 23 January 23 2021.
Cohen AC. 2018. Ecology of insect rearing systems: a mini-review of insect rearing papers from 1906-2017. Advances in Entomology. 6(2): 86–115.
Fuchsberg JR, Yong TH, Losey JE, Carter ME, & Hoffmann MP. 2007. Evaluation of corn leaf aphid (Rhopalosiphum maidis; Homoptera: Aphididae) honeydew as a food source for the egg parasitoid Trichogramma ostriniae (Hymenoptera: Trichogrammatidae). Biol. Control. 40(2): 230–236.
Godfray HCJ. 1994. Parasitoids: Behavioral and Evolutionary Ecology. Princeton University Press, New Jersey.
Goergen G, Kumar PL, Sankung SB, Togola A, & Tamò M. 2016. First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PloS One. 11(10): e0165632.
Husni, Jauharlina, & Al Haraqal A. 2011. Pengaruh superparasitisme terhadap perkembangan progeni parasitoid Tetrastichus brontispae Ferriere. J. Floratek. 6(1): 28–36.
Kenis M, du Plessis H, Van den Berg J, Ba MN, Goergen G, Kwadjo KE, Baoua I, Tefera T, Buddie A, Cafà G, Offord L, Rwomushana I, & Polaszek A. 2019. Telenomus remus, a candidate parasitoid for the biological control of Spodoptera frugiperda in Africa, is already present on the continent. Insects. 10(4): 92.
Kuate AF, Hanna R, Fotio ARPD, Abang AF, Nanga SN, Ngatat S, Tindo M, Masso C, Ndemah R, Suh C, & Fiaboe KKM. 2019. Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) in Cameroon: case study on its distribution, damage, pesticide use, genetic differentiation and host plants. PloS One. 14(4): e0215749.
Kuramitsu K, Ichiki RT, Nakamura S, & Kainoh Y. 2016. Host plants of the herbivorous insect Mythimna separata (Lepidoptera: Noctuidae) affect its susceptibility to parasitism by the larval parasitoid Cotesia kariyai (Hymenoptera: Braconidae). Biocontrol Sci. Technol. 26(7): 1009–1019.
Kuramitsu K, Vicencio EJM, & Kainoh Y. 2019. Differences in food plant species of the polyphagous herbivore Mythimna separata (Lepidoptera: Noctuidae) influence host searching behavior of its larval parasitoid, Cotesia kariyai (Hymenoptera: Braconidae). Arthropod-Plant Interactions: 13(1): 49-55.
Liao YL, Yang B, Xu MF, Lin W, Wang DS, Chen KW, & Chen HY. 2019. First report of Telenomus remus parasitizing Spodoptera frugiperda and its field parasitism in Southern China. J. Hymenopt. Res. 73: 95–102.
Luna MG, Desneux N, & Schneider MI. 2016. Encapsulation and self-superparasitism of Pseudapanteles dignus (Muesebeck) (Hymenoptera: Braconidae), a parasitoid of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). PloS One. 11(10): e0163196.
Norris RF & Kogan M. 2003. Concepts in Integrated Pest Management. Prentice Hall, New Jersey.
Pabbage MS & Tandiabang J. 2007. Parasitasi Trichogramma evanescens Westwood (Hymenoptera : Trichogrammatidae) pada berbagai tingkat populasi dan generasi biakan parasitoid terhadap telur penggerek batang jagung Ostrinia furnacalis Guenée. Agritrop. 26(1): 41–50.
R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
Sari A. 2020. The rearing of Microplitis manilae (Hymenoptera: Braconidae) on Spodoptera litura Fabricius (Lepidoptera: Noctuidae) feed different diets. In: Damayanti B, Dadang, Dewi S, Upik KH, Nurindah, Akhmad R, & Salmah Y (Eds.). Proceedings of the International Conference and the 10th Congress of the Entomological Society of Indonesia (ICCESI 2019). pp. 83–87. Bali, Indonesia.
Sari A, Buchori D, & Nurkomar I. 2020. The potential of Telenomus remus Nixon (Hymenoptera: Scelinoidae) as biocontrol agent for the new fall armyworm S. frugiperda (Lepidoptera: Noctuidae) in Indonesia. Planta Tropika: Jurnal Agrosains. 8(2): 69–74.
Senrayan R & Annadurai RS. 1991. Influence of host’s food plant and habitat on Anastatus ramakrishnae (Mani) (Hym., Eupelmidae), an egg parasitoid of Coridius obscurus (Fab.) (Het., Pentatomidae). J. Appl. Entomol. 112(3): 237–243.
Shylesha AN, Jalali SK, Gupta A, Varshney R, Venkatesan T, Shetty P, Ojha R, Ganiger PC, Navik O, Subaharan K, Bakthavatsalam N, Ballal CR & Raghavendra A. 2018. Studies on new invasive pest Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) and its natural enemies. Journal of Biological Control. 32(3): 145–151.
Song SJ, Bourchier RS, & Smith SM. 1997. Effect of host diet on acceptance of eastern spruce budworm eggs by Trichogramma minutum. Entomol. Exp. Appl. 84(1): 41–47.
Sparks AN. 1979. Fall armyworm symposium: A review of the biology of the fall armyworm. Fla. Entomol. 62(2): 82–87.
Susrama IGK. 2018. Variasi komposisi pakan buatan untuk serangga: suatu kajian pustaka. Jurnal Biologi Udayana. 22(2): 59–65.
Tormos J, Asis J, Sabater-Muñoz B, Baños L, Gayubo S, & Beitia F. 2012. Superparasitism in laboratory rearing of Spalangia cameroni (Hymenoptera: Pteromalidae), a parasitoid of medfly (Diptera: Tephritidae). Bull. Entomol. Res. 102(1): 51–61.
Uçkan F & Ergin E. 2002. Effect of host diet on the immature developmental time, fecundity, sex ratio, adult longevity, and size of Apanteles galleriae (Hymenoptera: Braconidae). Environ. Entomol. 31(1): 168–171.
Urrutia CMA, Wade MR, Phillips CB, & Wratten SD. 2007. Influence of host diet on parasitoid fitness: unravelling the complexity of a temperate pastoral agroecosystem. Entomol. Exp. Appl. 123(1): 63–71.
van Baalen M & Hemerik L. 2008. Parasitoid fitness: from a simple idea to an intricate concept. In: Wajnberg E, Bernstein C, & van Alphen J (Eds.). Behavioral Ecology of Insect Parasitoids: from Theoretical Approaches to Field Applications. pp. 31–50. Blackwell Publishing, Oxford.
Wang ZZ, Liu YQ, Shi M, Huang JH, & Chen XX. 2019. Parasitoid wasps as effective biological control agents. J. Integr. Agric. 18(4): 705–715.