CHARACTERIZATIONS OF Trichoderma sp. AND ITS EFFECT ON Ralstonia solanacearum OF TOBACCO SEEDLINGS

Main Article Content

Sutarman
Ahmad Khafidh Jalaluddin
Arrohmatus Syafaqoh Li’aini
Andriani Eko Prihatiningrum

Abstract

Characterizations of Trichoderma sp. and its effect on Ralstonia solanacearum of tobacco seedlings. This study aims to
determine the molecular-based characteristics of Trichoderma sp. Tc-Jjr-02 and its effect as a biocontrol agent in protecting tobacco
seedlings against bacterial wilt caused by R. solanacearum. The characterization of biocontrol agents was based on morphological
and molecular data’s observation using microscope and the key of determination. The in vivo experiments was consist of five
treatments: (1) inoculation of Trichoderma isolates at six hours before R. solanacearum inoculation, (2) inoculation of Trichoderma
isolates at six hours after R. solanacearum inoculation (3) simultaneous inoculation of Trichoderma isolates and R. solanacearum,
(4) inoculated only with R. solanacearum, and (5) without any inoculation. The experiment was repeated six times. Based on
BLAST’s analysis, the Tc-Jjr-02 sequence is in accordance with T. asperellum with 100% Query Cover. Inoculation of T. asperellum
Tc-Jjr-02 at six hours before and after and simultaneously with pathogens providing protection for young tobacco plants by slowing
down the time for the onset of blight by 100–162%, reducing the symptom index by 56–63%, and increasing the dry weight of plant
biomass by 39–53% compared to tobacco seeds which were only inoculated with R. solanacearum.

Article Details

How to Cite
(1)
Sutarman, S.; Jalaluddin, A. K.; Li’aini, A. S.; Prihatiningrum, A. E. CHARACTERIZATIONS OF Trichoderma Sp. AND ITS EFFECT ON Ralstonia Solanacearum OF TOBACCO SEEDLINGS. J Trop Plant Pests Dis 2020, 21, 8-19.


Section
Articles

References

Abdulmyanova LI, Teomashko NN, Terentyeva EO, Ruzieva DM, Sattarova RS, Azimova SS, & Gulyamova TG. 2015. Cytotoxic activity of fungal endophytes from Vinca. Int. J. Curr. Microbiol. App. Sci. 4(7): 321–329.

Anam GB, Reddy MS, & Ahn YH. 2019. Characterization of Trichoderma asperellum RM-28 for its sodic/saline-alkali tolerance and plant growth promoting activities to alleviate toxicity of red mud. Sci. Total Environ. 662: 462–469.

Araka GO, Ochora J, & Wakhisi J. 2016. Larvicidal efficacy of crude essential oil (leaf extracts) of pyrethrum (Chrysanthemum: Compositae), Eucalyptus camaldulensis Sm (Myrtaceae) and Nicotiana tabaccum (Tobacco L.) (Solanaceace) against third instar larvae of the malaria vector Anopheles gambiae s.s. Giles (Diptera: Culicidae). Int. J. Sci. Res. 5(3): 370–375.

Baiyee B, Ito S, & Sunpapao A. 2019. Trichoderma asperellum T1 mediated antifungal activity and induced defense response against leaf spot fungi in lettuce (Lactuca sativa L.). Physiol. Mol. Plant Pathol. 106: 96–101.

Buysens C, César V, Ferrais F, de Boulois HD & Declerck S. 2016. Inoculation of Medicago sativa cover crop with Rhizophagus irregularis and Trichoderma harzianum increases the yield of subsequently-grown potato under low nutrient conditions. Appl. Soil Ecol. 105: 137–143.

Chowdappa P, Kumar SPM, Lakshmi MJ, & Upreti KK. 2013. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol. Control. 65(1): 109–117.

Colla G, Rouphael Y, Mattia ED, El-Nakhel C, & Cardarelli M. 2015. Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as abiostimulant to promote growth, yield and nutrient uptake of vegetable crops. J. Sci. Food Agric. 95(8): 1706–1715.

Damalas CA & Eleftherohorinos IG. 2011. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health. 8(5): 1402–1419.

Daniel H. 2011. Benefits of tobacco. http://benefitof.net/benefits-of-tobacco/. Accessed on 24 April 2020.

[EMPPO] European and Mediterranean Plant Protection Organization. 2004. Diagnostic protocols for regulated pests: Ralstonia solanacearum. Bulletin OEPP/EPPO Bulletin. 34(2): 173–178.

Fan H, Song B, Bhadury PS, Jin L, Hu D, & Yang S. 2011. Antiviral activity and mechanism of action of novel thiourea containing chiral phosphonate on Tobacco Mosaic Virus. Int. J. Mol. Sci. 12(7): 4522–4535.

Farsalinos KE, Poulas K, Voudris V, & Le Houezec J. 2016. Electronic cigarette use in the European Union: analysis of a representative sample of 27 460 Europeans from 28 countries. Addiction. 111(11): 2032–2040.

Fauzantoro A, Muharam Y, & Gozan M. 2017. Improvement of nicotine yield by ethanolic heat reflux extraction of Nicotiana tabacum var. virginia origin of Ponorogo. Int. J. Appl. Eng. Res. 12(23): 13891-13897.

Fierer N, Jackson JA, Vilgalys R, & Jackson RB. 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. & Environ. Microb. 71(7): 4117–4120.

Gams W & Bissett J. 2002. Morphology and identification of Trichoderma. In: Kubicek CP & Harman GE (Eds.). Trichoderma and Gliocladium, Volume 1: Basic Biology, Taxonomy and Genetics. pp. 3–34. Taylor & Francis Ltd. London.

Gava CAT & Pinto JM. 2016. Biocontrol of melon wilt caused by Fusarium oxysporum Schlect f. sp. melonis using seed treatment with Trichoderma spp. and liquid compost. Biol. Control. 97: 13–20.

Giehl RFH & von Wirén N. 2014. Root nutrient foraging. Plant Physiol. 166(2): 509–517.

Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J, Marrone P, Morin L, & Stewart A. 2012. Have biopesticides come of age? Trends Biotechnol. 30(5): 250–258.

Gil SV, Pastor S, & March GJ. 2009. Quantitative isolation of biocontrol agents Trichoderma spp. Gliocladium spp. and Actinomycetes from soil with culture media. Microbiol. Res. 164(2): 196–205.

Gutarra L, Herrera J, Fernandez E, Kreuze J, & Lindqvist-Kreuze H. 2017. Diversity, pathogenicity, and current occurrence of bacterial wilt bacterium Ralstonia solanacearum in Peru. Front. Plant Sci. 8: 1221.

He A, Liu J, Wang X, Zhang Q, Song W, & Che J. 2019. Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize. J. Integr. Agric. 18(3): 599–606.

Hewedy OA, Lateif KSA, Seleiman MF, Shami A, Albarakaty FM, & El-Meihy RM. 2020. Phylogenetic diversity of Trichoderma strains and their antagonistic potential against soil-borne pathogens under stress conditions. Biology. 9(8): 189.

Hu X, Roberts DP, Xie L, Yu C, Li Y, Qin L, Hu L, Zhang Y, & Liao X. 2016. Use of formulated Trichoderma sp. Tri-1 in combination with reduced rates of chemical pesticide for control of Sclerotinia sclerotiorium on oilseed rape. Crop Prot. 79: 124–127.

Hu X, Roberts DP, Xie L, Maul JE, Yu C, Li Y, Zhang Y, Qin L, & Liao X. 2015. Components of a rice-oilseed rape production system augmented with Trichoderma sp. Tri-1 control Sclerotinia sclerotiorum on oilseed rape. Phytopathology. 105(10): 1325–1333.

Huang J, Wei Z, Tan S, Mei X, Yin S, Shen Q, & Xu Y. 2013. The rhizosphere soil of diseased tomato plants as a source for novel microorganisms to control bacterial wilt. Appl. Soil Ecol. 72: 79–84.

Jallow MFA, Awadh DG, Albaho MS, Devi VY, & Thomas BM. 2017. Pesticide knowledge and safety practices among farm workers in Kuwait: results of a survey. Int. J. Environ. Res. Public Health. 14(4): 340.

Jiang G, Wei Z, Xu J, Chen H, Zhang Y, She X, Macho AP, Ding W, & Liao B. 2017. Bacterial wilt in China: history, current status, and future perspectives. Front. Plant Sci. 8: 1549.

Karuppiah V, Sun J, Li T, Vallikkannu M, & Chen J. 2019. Co-cultivation of Trichoderma asperellum GDFS1009 and Bacillus amyloliquefaciens 1841 causes differential gene expression and improvement in the wheat growth and biocontrol activity. Front. Microbiol. 10: 1068.

Khan M, Subramaniam R, & Desveaux D. 2016. Of guards, decoys, baits and traps: pathogen perception in plants by type III effector sensors. Curr. Opin. Microbiol. 29: 49–55.

Kheirandish Z & Harighi B. 2015. Evaluation of bacterial antagonists of Ralstonia solanacearum, causal agent of bacterial wilt of potato. Biol. Control. 86: 14–19.

Kumar S, Stecher G, Li M, Knyaz C, & Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6): 1547–1549.

Laeshita P & Arwiyanto T. 2017. Resistance test of several tomato varieties to bacterial wilt diseases caused by Ralstonia solanacearum. Jurnal Perlindungan Tanaman Indonesia. 21(1): 51–53.

Levy DT, Borland R, Lindblom EN, Goniewicz ML, Meza R, Holford TR, Yuan Z, Luo Y, O’Connor RJ, Niaura R, & Abrams DB. 2017. Potential deaths averted in USA by replacing cigarettes with e-cigarettes. Tob Control. 27(1): 18–25.

Leylaie S & Zafari D. 2018. Antiproliferative and antimicrobial activities of secondary metabolites and phylogenetic study of endophytic Trichoderma species from Vinca plants. Front. Microbiol. 9: 1484.

Li C, Yu J, Gan L, Sun J, Wang C, Wang Q, Chen S, & Yang Y. 2018. Effects of tobacco pathogens and their antagonistic bacteria on tobacco root exudates. Open J. Appl. Sci. 8: 518–531.

Li L, Feng X, Tang M, Hao W, Han Y, Zhang G, & Wan S. 2014. Antibacterial activity of Lansiumamide B to tobacco bacterial wilt (Ralstonia solanacearum). Microbiol. Res. 169(7–8): 522–526.

Li X, Liu Y, Cai L, Zhang H, Shi J, & Yuan Y. 2017. Factors affecting the virulence of Ralstonia solanacearum and its colonization on tobacco roots. Plant Pathol. 66(8): 1345–1356.

Li Y, Feng J, Liu H, Wang L, Hsiang T, Li X, & Huang J. 2016. Genetic diversity and pathogenicity of Ralstonia solanacearum causing tobacco bacterial wilt in China. Plant Dis. 100(7): 1288–1296.

López-Bucio J, Pelagio-Flores R, & Herrera-Estrella A. 2015. Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic. 196: 109–123.

Lu Y, Rao S, Huang F, Cai Y, Wang G, & Cai K. 2016. Effects of biochar amendment on tomato bacterial wilt resistance and soil microbial amount and activity. Int. J. Agron. 2016: 2938282.

[NCBI] National Center for Biotechnology Infromation. 2020. Basic Logical Alignment Search Tool. http://www.ncbi.nlm.nih.gov/BLAST. Accessed on 1 February 2020.

Martínez-Medina A, Alguacil MDM, Pascual JA, & Van Wees SCM. 2014. Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. J. Chem. Ecol. 40(7): 804–815.

Mutimawurugo MC, Wagara IN, Muhinyuza JB, & Ogweno JO. 2019. Virulence and characterization of isolates of potato bacterial wilt caused by Ralstonia solanacearum (Smith) in Rwanda. Afr. J. Agric. Res. 14(6): 311–320.

Pruksakorn P, Arai M, Kotoku N, Vilchèze C, Baughn AD, Moodley P, Jacobs WR Jr, & Kobayashi M. 2010. Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorg. Bioorganic Med. Chem. Lett. 20(12): 3658–3663.

Raheem A, Khan N, & Ali S. 2016. Influence of fungicide on post emergence of damping-off in tobacco (Nicotiana tobacum L.) nursery. Int. J. Cur. Res. 8(7): 34624–34629.

Rubio MB, Quijada NM, Pérez E, Domínguez S, Monte E, & Hermosa R. 2014. Identifying beneficial qualities of Trichoderma parareesei for plants. Appl. Environ. Microbiol. 80(6): 1864–1873.

Saravanakumar K, Yu C, Dou K, Wang M, Li Y, & Chen J. 2016. Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. cucumerinum. Biol. Control. 94: 37–46.

Shang J, Liu B, & Xu Z. 2020. Efficacy of Trichoderma asperellum TC01 against anthracnose and growth promotion of Camellia sinensis seedlings. Biol. Control. 143: 104205.

Singh A, Shukla N, Kabadwal BC, Tewari AK, & Kumar J. 2018. Review on plant-Trichoderma-pathogen interaction. Int. J. Curr. Microbiol. App. Sci. 7(2): 2382–2397.

Sutarman, Prihatiningrum AE, Sukarno A, & Miftahurrohmat A. 2018. Initial growth response of shallot on Trichoderma formulated in oyster mushroom cultivation waste. IOP Conf. Ser.: Materials Sci. Eng. 420: 012064.

Sutarman. 2019. Application of Trichoderma harzianum as soil treatment and additional treatment for control of potato diseases. J. Agric. Sci. 2(2): 139–150.

Tahir HAS, Gu Q, Wu H, Niu Y, Huo R, & Gao X. 2017. Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci. Rep. 7: 40481.

Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo LW, & Lorito M. 2008. Trichoderma–plant–pathogen interactions. Soil Biol. Biochem. 40(1): 1–10.

Vinale F, Sivasithamparam K, Ghisalberti EL , Woo SL, Nigro M, Marra R, Lombardi N, Pascale A, Ruocco M, Lanzuise S, Manganiello G, & Lorito M. 2014. Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol. J. 8: 127–139.

Vinodkumar S, Indumathi T, & Nakkeeran S. 2017. Trichoderma asperellum (NVTA2) as a potential antagonist for the management of stem rot in carnation under protected cultivation. Biol. Control. 113: 58–64.

Wei Y, Sang Y, & Macho AP. 2017. The Ralstonia solanacearum Type III effector RipAY is phosphorylated in plant cells to modulate Its enzymatic activity. Front. Plant Sci. 8: 1899.

Wei Z, Huang JF, Hu J, Gu YA, Yang CL, Mei XL, Shen QR, Xu YC, & Friman VP. 2015. Altering transplantation time to avoid periods of high temperature can efficiently reduce bacterial wilt disease incidence with tomato. PLoS ONE. 10(10): e0139313.

White TJ, Bruns T, Lee S, & Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, & White TJ (Eds.). PCR Protocols: a guide to Methods and Applications. pp. 315–322. Academic Press, New York.

Widmer TL. 2014. Screening Trichoderma species for biological control activity against Phytophthora ramorum in soil. Biol. Control. 79: 43–48.

Wu X, Li H, Wang Y, & Zhang X. 2020. Effects of bio-organic fertiliser fortified by Bacillus cereus QJ-1 on tobacco bacterial wilt control and soil quality improvement. Biocontrol Sci. Technol. 30(4): 351–359.

Yedidia I, Benhamou N, Kapulnik Y, & Chet I. 2000. Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol. Biochem. 38(11): 863–873.

Yuan S, Li M, Fang Z, Liu Y, Shi W, Pan B, Wu K, Shi J, Shen B, & Shen Q. 2016. Biological control of tobacco bacterial wilt using Trichoderma harzianum amended bioorganic fertilizer and the arbuscular mycorrhizal fungi Glomus mosseae. Biol. Control. 92: 164–171.

Zeilinger S, Gruber S, Bansal R, & Mukherjee PK. 2016. Secondary metabolism in Trichoderma-chemistry meets genomics. Fungal Biol. Rev. 30(2): 74–90.

Zhao L, Liu Q, Zhang Y, Cui Q, & Liang Y. 2017. Effect of acid phosphatase produced by Trichoderma asperellum Q1 on growth of Arabidopsis under salt stress. J. Integr. Agric. 16(6): 1341–1346.