The effect of methyl eugenol from Ocimum minimum on the sticky trap to the direction and daily activity of fruit flies (Bactrocera spp.)

Authors

  • Agus Kardinan Indonesian Spice and Medicinal Crops Research Institute (ISMECRI)
  • Paramita Maris Indonesian Spice and Medicinal Crops Research Institute (ISMECRI)

DOI:

https://doi.org/10.23960/jhptt.12216-22

Keywords:

attractant, Bactrocera spp., control, orchard, period

Abstract

The fruit fly Bactrocera spp. is a major pest in the horticulture. It caused several important commodities to rot and fall which lead into large loss, or even crop failure. The research objective was to obtain information regarding the activity of fruit fly during night and day and the most attractive direction of sticky trap to trap the fruit flies. The research consisted of 3 activities, namely (1) analysis of active ingredient of Ocimum plant, (2) study on the effect of ocimum sticky traps on the direction of fruit flies, and (3) study on the effect ocimum sticky traps on the daily activity of fruit flies. The study on the effect of time and direction of trap consisted of 4 treatments (North, South, East and West) and 6 replications. A sticky trap contained methyl eugenol as active ingredient, smeared on a yellow plastic surface measuring 10 × 20 cm and attached to 2 m high wooden poles, each facing East and West, as well as North and South (as opposed to one wood). Observations were made every hour starting from 03:00 am to 07:00 pm (until there was no fruit flies get trapped in each treatment). The results showed that sticky trap used contain Ocimum oil containing 76% of methyl eugenol used as an attractant for fruit flies. Fruit flies active during the day where the highest/peak activity of the fruit flies population occured at around 07:00 am. The direction of trap to East and West catched more fruit flies number than to North and South.

References

Abbas M. 2018. Relationship between-directions and fruit distribution on trees and infestation percentage by the peach fruit fly B. zonata (Sunders) (Tephritidae) on guava host trees. Adv. Plants Agric. Res. 8(6): 500–503. https://doi.org/10.15406/apar.2018.08.00375

Bansode GM & Patel ZP. 2018. Effect of weather parameters on population fluctuation of mango fruit flies, Bactrocera spp. Int. J. Chem. Stud. 6(5): 27–30.

Barbosa P & Castellanos I. 2005. Ecology of Prey and Predator Interactions. Oxford University Press, Oxford.

Barma P & Jha S. 2011. Biology, seasonal activity of fruit fly (Bactrocera cucurbitae Coq.) on pointed gourd (Trichosanthes dioica Roxb.) and weather relations. The Journal of Plant Protection Sciences. 3(1): 48–53.

BMKG. 2021. Akses Data (Data online - Pusat database) [Access Data (Online Data-Central database)]. Badan Meteorologi, Klimatologi, dan Geofisika. https://dataonline.bmkg.go.id/akses_data. Accessed 6 October 2021.

BPBD. 2021. Prakiraan Cuaca untuk Kabupaten Bogor 16 Januari 2021 [Weather Forecast for Bogor Regency 16 January 2021]. Badan Penanggulangan Bencana Daerah Kabupaten Bogor. https://bpbd.bogorkab.go.id/prakitraan-cuaca-untuk-kabupaten-bogor-16-januari-2021/. Accessed 6 October 2021.

Broughton S & De Lima F. 2002. Control of Mediterranean Fruit Fly (Med Fly) in Backyards. Department of Agriculture and Food. Western Australia, Perth.

Das UK, Kashar N, Okram S, Jha S, & Karmakar S. 2017. Seasonal activity, weather relations and biology of melon fly (Bactrocera cusurbita Coq.) on pumpkin. Environment & Ecology. 35(3): 1634–1638.

El-Gendy IR. 2012. Elevation of attraction efficiency of jackson trap on peach fruit fly, Bactrocera zonata (Saunders). Int. J. Agric. Res. 7(4): 223–230. https://doi.org/10.3923/ijar.2012.223.230

Fournet S, Astier N, Cortesero AM, & Biron DG. 2004. Influence of a bimodal emergence strategy of a Dipteran host on life-history traits of its main parasitoids. Ecol. Entomol. 29(6): 685–691. https://doi.org/10.1111/j.0307-6946.2004.00651.x

Gottlieb D, Keasar T, Shmida A, & Motro U. 2005. Possible foraging benefit of bimodal daily activity in Proxylocopa olivieri (Lepeletier) (Hymenoptera: Anthophoridae). Environ. Entomol. 34(2): 417–424. https://doi.org/10.1603/0046-225X-34.2.417

Greany PD, McDonald RE, Schroeder WJ, & Shaw PE. 1991. Improvement in efficacy of gibberellic acid treatments in reducing susceptibility of grapefruit to attack by Caribbean fruit fly. Fla. Entomol. 74(4): 570–580. https://doi.org/10.2307/3495410

Hadipoentyanti E & Wahyuni S. 2008. Keragaman selasih (Ocimum spp.) berdasarkan karakter morfologi, produksi, dan mutu herba [Variability of Ocimum spp. based on morphological characters, yields and herbs quality]. Jurnal Littri. 14(4): 141–148. http://dx.doi.org/10.21082/jlittri.v14n4.2008.141-148

Hidayat Y, Fauziaty MR, & Dono D. 2018. The effectiveness of vegetable oil formulations in reducing oviposition of Bactrocera dorsalis Hendel (Diptera: Tephritidae) in large red chili. Jurnal Entomologi Indonesia. 15(2): 93–100. https://doi.org/10.5994/jei.15.2.87

Leftwich PT, Koukidou M, Rempoulakis P, Gong HF, Zacharopoulou A, Fu G, Chapman T, Economopoulos A, Vontas J, & Alphey L. 2014. Genetic elimination of field-cage populations of Mediterranean fruit flies. Proc. R. Soc. B. 281: 20141372. https://doi.org/10.1098/rspb.2014.1372

Lengkong M, Rante CS, & Meray M. 2011. Aplikasi MAT dalam pengendalian lalat buah Bactrocera sp. (Diptera: Tephritidae) pada tanaman cabe [MAT applications in controling of fruit fly Bactrocera sp. (Diptera: Tephritidae) on chilli plants]. Eugenia. 17(2): 121–127. https://doi.org/10.35791/eug.17.2.2011.3533

Liu H, Zhang D, Xu Y, Wang L, Cheng D, Qi Y, Zeng L, & Lu Y. 2019. Invasion, expansion and control of Bactrocera dorsalis (Hendel) in China. J. Integr. Agric. 18(4): 771–787. https://doi.org/10.1016/S2095-3119(18)62015-5

Manurung B, Prastowo P, & Tarigan EE. 2012. Pola aktivitas harian dan dinamika populasi lalat buah Bactrocera dorsalis complex pada pertanaman jeruk di dataran tinggi Kabupaten Karo Provinsi Sumatera Utara [Daily activity pattern and population dynamic of fruit fly Bactrocera dorsalis complex on citrus plantation at highland Karo district North Sumatera Province]. J. HPT Tropika. 12(2): 103–110. https://doi.org/10.23960/j.hptt.212103-110

Math M, Kotikal YK, & Ganiger VM. 2018. Species diversity and population dynamics of fruit flies in guava ecosystem. Int. J. Curr. Microbiol. App. Sci. 7(12): 2269–2283. https://doi.org/10.20546/ijcmas.2018.712.258

Maung KL, Mon YY, Khine MP, Chan KN, Phyo A, & Khai AA. 2019. Diversity and abundance of fruit flies (Famili:Tephritidae) in Myanmar’s tropical region and preliminary prospects for further AW-IPM. J. Entomol. Zool. Stud. 7(4): 574–579.

Mondal CK, Garain PK, Maitra NJ, & Maji A. 2015. Bio-friendly management of guava fruit fly (Bactrocera correcta Bezzi) through wrapping technique. J. Appl. & Nat. Sci. 7(1): 358–363. https://doi.org/10.31018/jans.v7i1.616

Mozhdehi MRA & Kayhanian AA. 2014. Application of deterrent compound for control of olive fruit flies Bactrocera oleae Gmelin. (Diptera: Tephritidae). Rom. J. Plant Prot. VII: 45–51.

Mulyadi R, Wilyus, & Novalina. 2021. Number of fruit flies (Diptera: Tephritidae) trapped in various combinations of methyl eugenol dosages and trap colors. IOP Conf. Series: Earth and Environmental Science. 667: 012085. https://doi.org/10.1088/1755-1315/667/1/012085

Raghuvanshi AK, Satpathy S, & Mishra DS. 2012. Role of abiotic factors on seasonal abundance and infestation of fruit fly, Bactrocera cucurbitae (Coq.) on bitter gourd. J. Plant Prot. Res. 52(2): 264–267. https://doi.org/10.2478/v10045-012-0042-3

Reyes-Hernandez M, Thimmappa R, Abraham S, Damodaram KJP, & Pérez-Staples D. 2018. Methyl eugenol effects on Bactrocera dorsalis male total body protein, reproductive organs and ejaculate. J. Appl. Entomol. 143(3): 177-186. https://doi.org/10.1111/jen.12576

Said AE, Fatahuddin, Asman, & Nasruddin A. 2017. Effect of sticky trap color and height on the capture of adult oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) on chili pepper. Am. J. Agric. Biol. Sci. 12(1): 13–17. https://doi.org/10.3844/ajabssp.2017.13.17

Skalicka-Wozniak K, Ludwiczuk A, Widelski J, Filipe JJ, Asakawa Y, & Glowniak K. 2009. Volatile constituents of Ocimum minimum Herb cultivated in Portugal. Nat. Prod. Commun. 4(10): 1383–1386.

Saputra HM, Sarinah, & Hasanah M. 2019. Kelimpahan dan dominasi lalat buah (Diptera: Tephritidae) pada pertanaman cabai (Capsicum annuum L.), di Desa Paya Benua, Bangka [Abundance and dominance of fruit flies (Diptera: Tephritidae) in the chili orchard (Capsicum annuum L.), Paya Benua Village, Bangka]. Agrosainstek. 3(1): 36–41. https://doi.org/10.33019/agrosainstek.v3i1.38

Sarwar M. 2015. Attraction of female and male fruit flies (Diptera: Tephritidae) to bait spray applications for reduction of pest populations. International Journal of Animal Biology. 1(5): 225–230.

Sikandar Z, Afzal MBS, Qasim MU, Banazeer A, Aziz A, Khan MN, Mughal KM, & Tariq H. 2017. Color preferences of fruit flies to methyl eugenol traps, population trend and dominance of fruit fly species in citrus orchards of Sargodha, Pakistan. J. Entomol. Zool. Stud. 5(6): 2190–2194.

Siwi SS, Hidayat P, & Suputa. 2006. Taksonomi dan Bioekologi Lalat Buah Penting di Indonesia (Diptera: Tephritidae) (Cetakan Kedua Revisi Pertama) [Taxonomy and Bioecology of Important Fruit Flies in Indonesia (Diptera: Tephritidae). Second Printing First Revision]. BB-BIOGEN, Bogor & AusAID, DAFF, Australia.

Swibawa IG, Susilo FX, Murti I, & Ristiyani E. 2003. Serangan Dacus cucurbitae (Diptera: Trypetidae) pada buah mentimun dan pare yang dibungkus pada saat pentil [Dacus cucurbitae (Diptera: Trypetidae) attacks on cucumber and peria fruits wrapped at cherelle stage]. J. HPT Tropika. 3(2): 43–46. https://doi.org/10.23960/j.hptt.2343-46

Stonehouse J, Afzal M, Zia Q, Mumford J, Poswal A, & Mahmood R. 2002. “Single-killing-point” field assessment of bait and lure control of fruit flies (Diptera: Tephritidae) in Pakistan. Crop Prot. 21(8): 651–659. https://doi.org/10.1016/S0261-2194(02)00019-4

Suputa, Trisyono YA, Martono E, & Siwi SS. 2010. Update on the host range of different species of fruit flies in Indonesia. Jurnal Perlindungan Tanaman Indonesia. 16(2): 62–75.

Susanto A, Fathoni F, Atami NIN, & Tohidin. 2017. Fluktuasi populasi lalat buah (Bactrocera dorsalis Kompleks) (Diptera: Tephritidae) pada pertanaman pepaya di Desa Margaluyu, Kabupaten Garut [Population fluctuations fruit fly (Bactrocera dorsalis Complex) (Diptera: Tephritidae) on a papaya plantation at the Margaluyu Village, Garut Regency]. Jurnal Agrikultura. 28(1): 32–38. https://doi.org/10.24198/agrikultura.v28i1.12297

Susanto A, Sudarjat, Yulia E, Permana AD, Gunawan A, & Yudistira DH. 2020. Effectiveness of modified traps for protection against fruit flies on mango. Jurnal Biodjati. 5(1): 99–106. https://doi.org/10.15575/biodjati.v5i1.7926

Tan KH & Nishida R. 2011. Methyl eugenol: its occurrence, distribution, and role in nature, especially relation to insect behavior and pollination. J. Insect Sci. 12: 56. https://doi.org/10.1673/031.012.5601

Tarwotjo U, Rahadian R, & Hadi M. 2019. Abudance and diversity of insects on apple water tree during fruit season using different colours and different height placement of sticky trap. J. Phys.: Conf. Ser. 1217: 012140. https://doi.org/10.1088/1742-6596/1217/1/012140

Telci I, Elmastas M, & Sahin A. 2009. Chemical composition and antioxidant activity of Ocimum minimum essentials oils. Chem. Nat. Compd. 45(4): 568–571. https://doi.org/10.1007/s10600-009-9369-z

Vargas RI, Pinero JC, & Leblanc L. 2015. An overview of pest species of Bactrocera fruit flies (Diptera: Tephritidae) and the integration of biopesticides with other biological approaches for their management with a focus on the pacific region. Insects. 6(2): 297–318. https://doi.org/10.3390/insects6020297

Varikou K, Garantonakis N, & Birouraki A. 2014. Response of olive fruit fly Bactrocera oleae to various attractant combinations, in orchards of Crete. Bull. Insectology. 67(1): 109–114.

Vignesh S, Chandrasekaran M, Ambethgar V, & Jeeva S. 2020. Diversity, distribution and varietal preference of fruit fly, Bactrocera spp. in mango ecosystem. IJAEB. 13(2): 169–174. https://doi.org/10.30954/0974-1712.02.2020.8

Weems HV, Heppner JB, Nation JL, & Steck GJ. 2019. Oriental Fruit Fly, Bactrocera dorsalis (Hendel) (Insecta: Diptera: Tephritidae). IFAS, University of Florida.

Wee SL, Hee AKW, & Tan KH. 2002. Comparative sensitivity to and consumption of methyl eugenol in three Bactrocera dorsalis (Diptera: Tephritidae) complex sibling species. Chemoecology. 12(4): 193–197. https://doi.org/10.1007/PL00012668

Wee SL, Munir MZA, & Hee AKW. 2017. Attraction and consumption of methyl eugenol by male Bactrocera umbrosa Fabricius (Diptera: Tephritidae) promotes conspecific sexual communication and mating performance. Bull. Entomol. Res. 108(1): 116–124. https://doi.org/10.1017/S0007485317000554

Wee SL & Hee AKW. 2018. Diurnal attraction of fruit flies (Diptera: Tephritidae) to methyl eugenol in a village ecosystem in Tanjung Bungah, Penang, Malaysia. Serangga. 23(2): 83–91.

Zulina C, Bakti D, & Siregar AZ. 2020. Testing of packaging and use of attractants to control fruit flies (Bactrocera dorsalis Hendel) on guava (Psidium guajava L.). Jurnal Pertanian Tropik. 7(3): 293–302.

Downloads

Published

2022-03-09
Read Counter : 106 times
PDF Download : 71 times