CROSS APPLICATION OF ENTOMOPATHOGENIC FUNGI RAW SECONDARY METABOLITES FOR CONTROLLING FUSARIUM WILT OF CHILI SEEDLINGS

Authors

  • Loekas Soesanto Faculty of Agriculture, Jenderal Soedirman University
  • Lintang Yunita Sari Faculty of Agriculture, Jenderal Soedirman University
  • Endang Mugiastuti Faculty of Agriculture, Jenderal Soedirman University
  • Abdul Manan Faculty of Agriculture, Jenderal Soedirman University

DOI:

https://doi.org/10.23960/jhptt.22182-90

Keywords:

chili plants, fusarium wilt, entomopathogenic fungi, secondary metabolites

Abstract

Cross application of entomopathogenic fungi raw secondary metabolites for controlling fusarium wilt of chili seedlings. The
research aimed to determine the effect of entomopathogenic fungi raw secondary metabolites on fusarium wilt on chili plants and on growth of chili. In vitro test used a Completely Randomized Design with 5 treatments and 5 replicate and in planta using a Randomized Block Design with 5 treatments and 5 replicatie including control, secondary metabolites of Beauveria bassiana B10, B. bassiana B16, Metarhizium anisopliae M16, dan Lecanicillium lecanii L16. Variables observed included inhibition ability, incubation period, desease intensity, plant height, root length, and phenolic compounds (tannins, saponin, and hydroquinone) content qualitatively. The results showed that secondary metabolites of B. bassiana B10, B. bassiana B16, M. anisopliae M16, and L. lecanii L16 were able to inhibit growth of Fusarium oxysporum f.sp. capsici by 50.62; 50,64; 48,62; 56.62%, respectively, extend incubation periods of 71.05; 73,38; 64.89; and 68.57%, respectively, suppress disease intensity by 99.99; 99.99; 99.99; and 99.99%, respectively, can increase plant height by 15.22; 18.8; 21.14; 21.69%, respectively, increasing the root length by 22.61; 25,71; 26,34; 33.50%, respectively, and can increase the content of tannins, saponins and hydroquinone compounds qualitatively compared to controls. The secondary metabolites of enthomopathogenic fungi could be used as organic control for soilborne pathogenic fungi.

References

Abdel-Monaim MF & Ismail ME. 2010. The use of antioxidants to control roor rot and wilt diseases of pepper. Not Sci. Biol. 2(2): 46–55.

Afandhi A, Widjayanti T, Emi AAL, Tarno H, Afiyanti M, & Handoko RNS. 2019. Endophytic fungiBeauveria bassiana Balsamo accelerates growth of common bean (Phaeseolus vulgaris L.). Chem. Biol. Technol. Agric. 6: 11.

Altinok HH, Altinok MA, & Koca AS. 2019. Modes of action of entomopathogenic fungi. Curr. Trends Nat. Sci. 8(16): 117–124.

Auwal MS, Saka S, Mairiga IA, Sanda KA, Shuaibu A, & Ibrahim A. 2014. Preliminary phytochemical and elemental analysis of aqueous and fractionated pod extracts of Acacia nilotica (Thorn mimosa). Vet. Res. Forum. 5(2): 95–100.

Baenas N, Belovic M, Ilic N, Moreno DA, & García-Viguera C. 2018. Industrial use of pepper (Capsicum annum L.) derived products: technological benefits and biological advantages. Food Chem. 274: 872–885.

Bani M, Pérez-De-Luque A, Rubiales D, & Rispail N. 2018. Physical and chemical barriers in root tissues contribute to quantitative resistance to Fusarium oxysporum f.sp. pisi in pea. Front Plant Sci. 9: 199.

Barra-Bucarei L, Iglesias AF, González MG, Aguayo GS, Carrasco-Fernández J, Castro JF, & Campos JO. 2020. Antifungal activity of Beauveria bassiana endophyte against Botrytis cinerea in two Solanaceae crops. Microorganisms. 8(1): 65.

Bashir MR, Atiq M, Sajid M, Mohsan M, Abbas W, Alam MW, & Bashair M. 2018. Antifungal exploitation of fungicides against Fusarium oxysporum f.sp. capsici causing Fusarium wilt of chilli pepper in Pakistan. Environ. Sci. Pollut. Res. 25(2): 6797–6801.

Bekker TF, Kaiser C, Merwe Rvd, & Labuschagne N. 2006. In-vitro inhibition of mycelial growth of several phytopathogenic fungi by soluble potassium silicate. S. Afr. J. Plant Soil. 23(3): 169–172.

Bele AA, Jadhav VM, & Kadam VJ. 2010. Potential of tannnins: a review. Asian J. Plant Sci. 9(4): 209–214.

Besset-Manzoni Y, Joly P, Brutel A, Gerin F, Soudière O, Langin T, & Prigent-Combaret C. 2019. Does in vitro selection of biocontrol agents guarantee success in planta? A study case of wheat protection against Fusarium seedling blight by soil bacteria. PLoS One. 14(12): e0225655.

B³aszczyk L, Waskiewicz A, Gromadzka K, Miko³ajczak K, & Che³kowski J. 2021. Sarocladium and Lecanicillium associated with maize seeds and their potential to form selected secondary metabolites. Biomolecules. 11(1): 98.

Corrêa B, da Silveira Duarte V, Silva DM, Mascarin GM, & Júnior ID. 2020. Comparative analysis of blastospore production and virulence of Beauveria bassiana and Cordyceps fumosorosea against soybean pests. BioControl. 65: 323–337.

Dangl JL & Jones JDG. 2001. Plant pathogens and integrated defence responses to infection. Nature. 411: 826–833.

de Laguna IHB, Marante FJT, & Mioso R. 2015. Enzymes and bioproducts produced by the ascomycete fungus Paecilomyces variotii. J. Appl. Microbiol. 119(6): 1455–1466.

de Lamo FJ & Takken FLW. 2020. Biocontrol by Fusarium oxysporum using endophyte-mediated resistance. Front Plant Sci. 11: 37.

Farahani-Kofoet RD, Witzel K, Graefe J, Grosch R, & Zrenner R. 2020. Species-specific impact of Fusarium infection on the root and shoot characteristics of Asparagus. Pathogens. 9(6): 509.

Fernandes EG, Valério HM, Feltrin T, & der Sand STV. 2012. Variability in the production of extracellular enzymes by entomopathogenic fungi grown on different substrates. Braz. J. Microbiol. 43(2): 827–833.

Fitriana Y, Suharjo R, Swibawa IG, Purnomo, Lestari P, & Merdiana E. 2018. Influence of culture medium on the sporulation and viability of Aspergillus spp. and Talaromyces spp. entomopathogenic fungi. J. HPT Tropika. 18(1): 12–22.

Gabrekiristos E & Demiyo T. 2020. Hot pepper Fusarium wilt (Fusarium oxysporum f.sp. capsici): Epidemics, characteristic features and management options. J. Agric. Sci. 12(10): 347–360.

Gordon TR. 2017. Fusarium oxysporum and the Fusarium wilt syndrome. Annu. Rev. Phytopathol. 55(1): 23–39.

Gull I, Javed A, Aslam MS, Mushtaq R, & Athar MA. 2016. Use of Moringa oleifera flower pod extract as natural preservative and development of SCAR marker for Its DNA based identification. BioMed Res. Int. 2016(2): 1–12.

Gustianingtyas M, Herlinda S, Suwandi, Suparman, Hamidson H, Hasbi, Setiawan A, Verawaty M, Elfita, & Arsi. 2020. Toxicity of entomopathogenic fungal culture filtrate of lowland and highland soil of South Sumatra (Indonesia) against Spodoptera litura larvae. Biodiversitas. 21(5): 1839–1849.

Hsia ICC, Islam TMd, Ibrahim Y, How TY, & Omar D. 2014. Evaluation of conidial viability of entomopathogenic fungi as influenced by temperature and additive. Int. J. Agric. Biol. 16(1): 146–152.

Jaber LR & Enkerli J. 2017. Fungal entomopathogens as endophytes: can they promote plant growth? Biocontrol Sci. Technol. 27(1): 28–41.

Jaber LR & Ownley BH. 2018. Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol. Control. 116: 36–45.

Juric S, Stracenski KS, Król-Kiliñska Z, Žutic I, Uher SF, Ðermic E, Topolovec-Pintaric S, & Vincekovic M. 2020. The enhancement of plant secondary metabolites content in Lactuca sativa L. by encapsulated bioactive agents. Sci. Rep 10(1): 3737.

Kalman B, Abraham D, Graph S, Perl-Treves R, Harel YM, & Degani O. 2020. Isolation and identification of Fusarium spp., the causal agents of onion (Allium cepa) basal rot in Northeastern Israel. Biology. 9(4): 69.

Keswani C, Singh SP, & Singh HB. 2013. Beauveria bassiana: status, mode of action, applications and safety issues. Biotech Today. 3(1): 16–19.

Kim JJ, Jeong G, Han JH, & Lee S. 2013. Biological control of aphid using fungal culture and culture filtrates of Beauveria bassiana. Mycobiology. 41(4): 221–224.

Köhl J, Kolnaar R, & Ravensberg WJ. 2019. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front. Plant Sci. 10: 845.

Kumar M, Brar A, Yadav M, Chawade A, Vivekanand V, & Pareek N. 2018. Chitinases-potential candidates for enhanced plant resistance towards fungal pathogens. Agriculture. 8(7): 88.

Leclerc M, Doré T, Gilligan CA, Lucas P, & Filipe JAN. 2014. Estimating the delay between host infection and disease (incubation period) and assessing its significance to the epidemiology of plant diseases. PLoS One. 9(1): e86568.

Litwin A, Nowak M, & Rózalska S. 2020. Entomopathogenic fungi: unconventional applications. Rev. Environ. Sci. Biotechnol. 19: 23–42.

Lopez DC & Sword GA. 2015. The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biol. Control. 89: 53–60.

Molnar I, Gibson DM, & Krasnoff SB. 2010. Secondary metabolites from entomopathogenic Hypocrealean fungi. Nat. Prod. Rep. 27(9): 1241–1275.

Mondal S, Baksi S, Koris A, & Vatai G. 2016. Journey of enzymes in entomopathogenic fungi. Pac. Sci. Rev.. 18(2): 85–99.

Mora MAE, Castilho AMC, & Fraga ME. 2017. Classification and infection mechanism of entomopathogenic fungi. Arq. Inst. Biol. 84: e0552015.

Neugart S, Baldermann S, Hanschen FS, Klopsch R, Wiesner-Reinhold M, & Schreiner M. 2018. The intrinsic quality of brassicaceous vegetables: how secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Sci. Hortic. 233: 460–478.

Olatunji TL & Afolayan AJ. 2018. The suitability of chili pepper (Capsicum annuum L.) for alleviating human micronutrient dietary deficiencies: a review. Food Sci. Nutr. 6(8): 2239–2251.

Ownley BH, Gwinn KD, & Vega FE. 2010. Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl. 55: 113–128.

Petrisor C & Stoian G. 2017. The role of hydrolytic enzymes produced by entomopathogenic fungi in pathogenesis of insects. Rom. J. Plant Prot. 10: 66–72.

Rahmania N, Herpandi, & Rozirwan. 2018. Phytochemical test of mangrove Avicennia alba, Rhizophora apiculata and Sonneratia alba from Musi River Estuary, South Sumatera. BIOVALENTIA: Biological Research Journal. 4(2): 1–8.

Ribeiro BD, Barreto DW, & Coelho MAZ. 2013. Application of foam column as green technology for concentration of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro). Braz. J. Chem. Eng. 30(4): 701–709.

Ríos-Moreno A, Garrido-Jurado I, Resquín-Romero G, Arroyo-Manzanares N, Arce L, & Quesada-Moraga E. 2016. Destruxin a production by Metarhizium brunneum strains during transient endophytic colonisation of Solanum tuberosum. Biocontrol Sci. Technol. 26(11): 1574–1585.

Roshandel S, Askary H, Hassanlouei RT, & Allahyari H. 2016. The effect of natural substrates on the sporulation and viability of conidia and blastospores of Metarhizium anisopliae. BCPP. 4(1): 94–104.

Rustiguel CB, Joao AJ, & Guimarães LHS. 2012. Optimization of the chitinase production by different Metarhizium anisopliae strains under solid-state fermentation with silkworm chrysalis as substrate using CCRD. Adv. Microbiol. 2: 268–276.

Sharma S & Gupta N. 2020. Defense signaling in plants against micro-creatures: do or die. Indian Phytopathol. 73: 605–613.

Soesanto L, Kustam, & Mugiastuti E. 2019. Application of Bio P60 and Bio T10 in combination against Phytophthora wilt of papaya. Biosaintifika: Journal of Biology & Biology Education. 11(3): 339–344.

Velarde-Félix S, Garzón-Tiznado JA, Hernández-Verdugo S, López-Orona CA, & Retes-Manjarrez JE. 2018. Occurrence of Fusarium oxysporum causing wilt on pepper in Mexico. Can. J. Plant Pathol. 40(2): 238–247.

Velivelli S, de Vos P, Kromann P, Declerck S, & Prestwich BD. 2014. Biological control agents: from field to market, problems, and challenges. Trends Biotechnol. 32(10): 493–496.

Vidal NP, Adigun OA, Pham TH, Mumtaz A, Manful C, Callahan G, Stewart P, Keough D, & Thomas RH. 2018. The effects of cold saponification on the unsaponified fatty acid composition and sensory perception of commercial natural herbal soaps. Molecules. 23(9): 2356.

Živkovic S, Stojanovic S, Ivanovic Z, Gavrilovic V, Popovic T, & Balaž JS. 2010. Screening of antagonistic activity of microorganisms against Colletotrichum acutatum and Colletotrichum gloeosporioides. Arch. Biol. Sci. 62(3): 611–623.

Downloads

Published

2021-04-08
Read Counter : 131 times
PDF Download : 19 times