UTILIZATION OF PLANT EXTRACTS TO SUPPRESS Squash Mosaic Virus INFECTION ON RIDGED GOURD (Luffa acutangula [L.Roxb])

Authors

  • Maharani Mustika Putri Department of Plant Protection, Faculty of Agriculture, IPB University
  • Tri Asmira Damayanti Department of Plant Protection, Faculty of Agriculture, IPB University https://orcid.org/0000-0002-8730-9240

DOI:

https://doi.org/10.23960/jhptt.220108-115

Keywords:

comovirus, Cucurbitaceae, induced systemic resistance, plant extracts

Abstract

Utilization of plant extracts to suppress Squash Mosaic Virus Infection on ridged gourd (Luffa acutangula [L]. Roxb).
Control effort strategies against plant pathogens are necessary to be explored and evaluated its effectiveness intensively.
One environmentally friendly control method is biological control by using plant extracts. It is well known that cucurbits are
cultivated widely in Indonesia. However, cucurbits are susceptible plants against various pathogens, including viruses.
Recently, Squash mosaic virus (SqMV) found to infect cucurbits such as ridged gourd in West Java. The research aimed to
explore and evaluate the effectiveness of plant extracts to suppress SqMV infection on the ridged gourd. Three selected
plants, namely Bougainvillea spectabilis, Mirabilis jalapa, and Celosia cristata, were tested in greenhouse trial with aspirin
as a comparison. The extract was sprayed on the leaves a day before mechanical virus infection. The disease assessments and
agronomic parameters were observed. The plant extract treatment showed able to prolonged the incubation period, caused
milder symptoms, reduced the virus titer, and showed better plant growth in compared with aspirin treatment or untreated
control. B. spectabilis and M. jalapa crude leaf extract revealed able to suppress the SqMV infection with comparable
effectiveness with relative inhibition level of disease severity and virus titer up to 48.2% and 80.6 to 81.4%, respectively,
indicating their potential as biocontrol for SqMV.

References

Agrios GN. 2005. Plant Pathology 5th edition. Academic Press. Elsevier.

Ayo-John EI, Olorunmaiye PM, Odedara OO, Dada OB, Abiola KO, & Oladukun JO. 2014. Assessment of field-grown cucurbit crops and weeds within farms in South-West Nigeria for viral disease. Not. Sci. Biol. 6(3): 321–325.

Balasarawathi R, Sadasivam S, Ward M, & Walker JM. 1998. An antiviral protein from Bougainvillea spectabilis roots, purification and characterization. Phytochemistry 47(8): 1561–1565.

Balasubrahmanyam A, Baranwal VK, Lodha ML,Varma A, & Kapoor HC. 2000. Purification and properties of growth stage-dependent antiviral proteins from the leaves of Celosia cristata. Plant Sci. 154(1): 13–21.

Baranwal VK & Verma HN. 1997. Characteristics of a virus inhibitor from the leaf extract of Celosia cristata. Plant Pathol. 46(4): 523–529.

CPC (Crop Protection Compendium). 2007. Crop Protection Global Module. CABI, Wallingford.

Choudhary DK, Prakash A, & Johri BN. 2007. Induced systemic resistance (ISR) in plants: mechanism of action. Indian J. Microbiol. 47(4): 289–297.

Damayanti TA & Panjaitan MT. 2014. Aktivitas antivirus beberapa ekstrak tanaman terhadap Bean common mosaic virus strain black eye cowpea (BCMV-BlC) pada kacang panjang. J. HPT Tropika. 14(1): 32–40.

Deepthi N, Madhusudhan KN, Shankar ACU, Kumar HB, Prakash HS, & Shetty ES. 2007. Effect of plant extracts and acetone precipitated proteins from six medical plants against tobamovirus infection. Int. J. Virol. 3(2): 80–87.

Edi S & Bobihoe J. 2010. Budidaya Tanaman Sayuran. Balai Pengkajian Teknologi Pertanian Jambi, Jambi.

Gholizadeh A, Kumar M, Balasubrahmanyam S, Sharma S, Narwal S, Lodha ML, & Kapoor HC. 2004. Antioxidant activity of antiviral proteins from Celosia cristata. J. Plant Biochem. Biotechnol. 13(1): 13–18.

Hersanti. 2004. Pengaruh ekstrak beberapa tumbuhan dalam menginduksi ketahanan sistemik tanaman cabai merah (Capsicum annuum L.) terhadap Cucumber Mosaic Virus (CMV). Dissertation. Universitas Padjadjaran, Bandung.

Hull R. 2013. Matthews’ Plant Virology. 4th edition. Academic Press, Elsevier.

Kubo S, Ikeda T, Imaizumi S, Takanami Y, & Mikami Y. 1990. A potent plant virus inhibitor found in Mirabilis jalapa L. Ann. Phytopath. Soc. Japan. 56(4): 481–487.

Kumalasari RN, Martosudiro M, & Hadiastono T. 2015. Pengaruh berbagai jenis ekstrak nabati terhadap infeksi Cucumber mosaik virus (CMV) pada tanaman mentimun (Cucumis sativus L.). J. HPT. 3(1): 30–35.

Kurnianingsih L & Damayanti TA. 2012. Lima ekstrak tumbuhan untuk menekan infeksi Bean common mosaic virus pada tanaman kacang panjang. J. Fitopatol. Indones. 8(6): 155–160.

Lestari SM & Nurhayati E. 2014. Efisiensi tular benih Squash mosaic virus pada Cucurbitaceae. J. Fitopatol. Indones. 10(3): 81–86.

Listihani. 2018. Distribusi dan identifikasi virus utama pada mentimun di Jawa. Thesis. Institut Pertanian Bogor, Bogor.

Madhusudhan KN, Vinayarani G, Deepak SA, Niranjana SR, Prakash HS, Singh GP, Sinha AK, & Prasad BC. 2011. Antiviral activity of plant extracts and other inducers against Tobamoviruses infection in bell pepper and tomato plants. Int. J. Plant Pathol. 2(1): 35–42.

Mahdy AMM, Hafez MA, EL-Dougdoug KhA, Fawzy RN, & Shahwan ESM. 2010. Effect of two biotic inducers on salicylic acid induction in tomato infected with Cucumber mosaic cucumovirus. Egyptian J. Virol. SP issue: 355–372.

Naylor M, Murphy AM, Berry JO, & Carr JP. 1998. Salicylic acid can induce resistance to plant virus movement. MPMI. 11(9): 860–868.

Radwan DEM, Fayez KA, Mahmoud SY, Hamad A, & Lu G. 2007. Physiological and metabolic changes of Cucurbita pepo leaves in response to Zucchini yellow mosaic virus (ZYMV) infection and salicylic acid treatments. Plant Physiol. Biochem. 45(6–7): 480–489.

Rajinimala N, Rabindran R, & Ramaiah M. 2009. Management of Bittergourd yellow mosaic virus (BGYMV) by using virus inhibiting chemical, biocontrol agents, antiviral principles (AVP) and insecticide. Arch. Phytopathol. Plant Protect. 42(8): 738–750.

Rubatzky VE & Yamaguchi M. 1997. World Vegetables: Principles, Production, and Nutritive Value. Springer, California.

Glatthaar-Saalmüller G, Mair KH, & Saalmüller A. 2017. Antiviral activity of aspirin against RNA viruses of the respiratory tract-an in vitro study. Influenza Other Respir. Viruses. 11(1): 85–92.

Sedghi M, Basiri HK, & Sharifi RS. 2013. Effect of salicylic acid on the antioxidant enzymes activity in Sunflower. AWUT-serBio. 16(2): 67–72.

Sharma U, Thakur PD, Handa A, Bhaik A, & Gupta D. 2007. Effect of Centella asiatica and Vitex negundo against TuMV infecting radish. J. Plant. Dis. Sci. 2(1): 22–25.

Sujatmiko B, Sulistyaningsih E, & Murti RH. 2012. Studi ketahanan melon (Cucumis melo L) terhadap layu Fusarium secara in vitro dan kaitannya dengan asam salisilat. Ilmu Pertan. 15(2): 1–18.

Verma HN, Baranwal VK, & Srivastava S. 1998. Antiviral substances of plant origin. In: Hadidi A, Khetarpal RK, & Koganezawa H (Eds.). Plant Viruses Diseases Control. pp. 154–162. APS Press, St. Paul (US).

Vicente MRS & Plasencia J. 2011. Salicylic acid beyond defence: its role in plant growth and development. J. Exp. Bot. 62(10): 3321–3338.

Vivanco JM, Querci M, & Salazar LF. 1999. Antiviral and antiviroid activity of MAP-containing extracts from Mirabilis jalapa roots. Plant Dis. 83(12): 1116–1121.

Downloads

Published

2020-08-28
Read Counter : 121 times
PDF Download : 83 times