APPLICATION OF RAW SECONDARY METABOLITES FROM FOUR ENTOMOPATHOGENIC FUNGI AGAINST CHILLI DISEASE CAUSED BY VIRUSES

Loekas Soesanto, Noviana Prastyani, Darini Sri Utami, Abdul Manan

Abstract


Application of raw secondary metabolites from four entomopathogenic fungi against chilli disease caused by viruses. The purpose of this research was to investigate several kinds of raw secondary metabolits to decrease viral disease in chilli and inspect their side effect to plant growth. This research was conducted at experimental farm, Faculty of Agriculture, Jenderal Soedirman University from November 2018 to March 2019. The chilli seeds used for indicator plant were obtained from virus-symptomatic chilli. The raw secondary metabolites was collected from four microbial isolates used in this study, i.e. Metarhizium anisopliae, Beauveria bassiana (Papua isolate), Lecanicillium lecanii and B. bassiana Bio B10 (Jember isolate). The experiment was arranged in completely randomized design with five replications. Observation was performed on incubation period, disease intensity, AUDPC, germination percentage, plant height, number of leaves, and number of shoots. The result showed that raw secondary metabolites obtained from M. anisopliae gave the best capability to suppress disease development. Application of M. anisopliae raw secondary metabolites reduced incubation period, viral disease intensity as well as AUDPC in 34.22; 77.98 and 79.49%, respectively. The raw secondary metabolites of L. lecanii could increase percentage of germination, plant height, number of leaves, and number of shoots as 100; 38.96; 38.96 and 52.38%, respectively, compared to control.

Keywords


chilli, entomopathogenic fungi, raw secondary metabolites, viral disease

Full Text:

PDF

References


Addrah ME, Zhang Y, Zhang J, Liu L, Zhou H, Chen W, & Zhao J. 2020. Fungicide treatments to control seed-borne fungi of sunflower seeds. Pathogens. 9(1): 29.

Ahmed AA & Ram MR. 2016. Medicinal plant extracts for the management of leaf curl disease of chillie (Capsicum annuum Linn). World. J. Pharm. Pharm. Sci. 5(6): 1916–1924.

Ali F & Aprilia RL. 2018. Serangan virus kuning terong pada induksi ekstrak daun Clerodendrum japonicum dan Mirabilis jalapa. Agrovigor. 11(2): 101–105.

Alves SB & Pereira RM. 1989. Production of Metarhizium anisopliae (Metsch.) Sorok and Beauveria bassiana (Bals.) Vuill. in plastic trays. Ecossistema. 14: 188–192.

Asare-Bediako E, Addo-Quaye A, Boakye B, Sarbah JM, Asante P, & Dorm E. 2015. Incidence and severity of viral and fungal diseases of chili pepper (Capsicum frutescens) in some districts in Ghana. IJPSS. 7(3): 147–159.

Banu JG & Rajalakshmi S. 2014. Standardisation of media for mass multiplication of entomopathogenic fungi. Indian J. Plant Prot. 42(1): 91–93.

Bielza P. 2008. Insecticide resistance management strategies against the western flower thrips, Frankliniella occidentalis. Pest Manag. Sci. 64(11): 1131–1138.

Central Statistics Agency. 2019. Produksi tanaman sayuran. https://www.bps.go.id/site/resultTab. Accessed on 10 June 2019.

Chaubey AN, Mishra RS, & Singh V. 2017. Ecofriendly management of leaf curl disease of chilli through botanical bio-pesticides. Plant Arch. 17(1): 285–291.

Claydon N & Grove JF. 1982. Insecticidal secondary metabolic products from the entomogenous fungus Verticillium lecanii. J. Invertebr. Pathol. 40(3): 413–418.

Devi DB, Reddy MK, Padmodaya B, Reddy VLN, & Srilatha V. 2019. Survey for the incidence of viral diseases in chilli in Andhra Pradesh, India. Int. J. Curr. Microbiol. App. Sci. 8(11): 2136–2143.

Dougoud J, Toepfer S, Bateman M, & Jenner WH. 2019. Efficacy of homemade botanical insecticides based on traditional knowledge. A review. Agron. Sustain. Dev. 39(4): 37.

Fadhila C, Lal A, Vo TTB, Ho PT, Hidayat SH, Lee J, Kil E-J, & Lee S. 2020. The threat of seed-transmissible pepper yellow leaf curl Indonesia virus in chili pepper. Microb. Pathog. 143: 104132.

Farrag AA, Abd-Elfattah TA, Abdelatef GM, & El-Dydamony MK. 2015. Effect of four bioactive compounds separately and in combination with Metarhizium anisopliae on the activity of some haemolymph enzymes of Schistocerca gregaria (Forskal). J. Plant Prot. and Path. 6(6): 871–883.

Gibson DM, Donzelli BGG, Krasnoff SB, & Keyhani NO. 2014. Discovering the secondary metabolite potential encoded within entomopathogenic fungi. Nat. Prod. Rep. 31(10): 1287–1305.

Gunaeni N & Wulandari AW. 2010. Cara pengendalian nonkimiawi terhadap serangga vektor kutudaun dan intensitas serangan penyakit virus mosaik pada tanaman cabai merah. J. Hort. 20(4): 368-376.

Gunaeni N & Purwati E. 2013. Uji ketahanan terhadap Tomato yellow leaf curl virus pada beberapa galur tomat. J. Hort. 23(1): 65–71.

Gunaeni N, Setiawati W, & Kusandriani Y. 2014. Pengaruh perangkap likat kuning, ekstrak Tagetes erecta, dan imidacloprid terhadap perkembangan vektor kutukebul dan virus kuning keriting pada tanaman cabai merah (Capsicum annuum L.). J. Hort. 24(4): 346–354.

Humphries T, Chauhan BS, & Florentine SK. 2018. Environmental factors effecting the germination and seedling emergence of two populations of an aggressive agricultural weed; Nassella trichotoma. PLoS ONE 13(7): e0199491.

Isaka M, Kittakoop P, Kirtikara K, Hywel-Jones NL, & Thebtaranonth Y. 2005. Bioactive substances from insect pathogenic fungi. Acc. Chem. Res. 38(10): 813–823.

Jaber LR & Salem NM. 2014. Endophytic colonization of squash by the fungal entomopathogen Beauveria bassiana (Ascomicotyna: Hypocreales) for managing Zucchini yellow mosaic virus in cucurbits. Biocontrol Sci. Technol. 24(10): 1096–1109.

Kesumawati E, Sabaruddin, Asdhani M, & Sofyan. 2018. Correlation between virus attacks at the several phases of growth with the yield of chili pepper (Capsicum annuum L.) in lowland. Proceeding the International Seminar on Tropical Horticulture. pp. 221–231. IPB International Convention Center, Bogor.

Khaerati & Indriati G. 2015. Lecanicillium lecanii (Ascomycota: Hypocreales) sebagai agens hayati pengendalian hama dan penyakit tanaman. SIRINOV. 3(2): 93–102.

Khoiroh F, Isnawati, & Faizah U. 2014. Patogenitas cendawan entomopatogen (Lecanicillium lecanii) sebagai bioinsektisida untuk pengendalian hama wereng coklat secara in vitro. LenteraBio. 3(2): 115–121.

Kumar CMS, Jacob TK, Devasahayam S, Thomas S, & Geethu C. 2018. Multifarious plant growth promotion by an entomopathogenic fungus Lecanicillium psalliotae. Microbiol. Res. 207: 153–160.

Lopez DC & Sword GA. 2015. The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biol. Control. 89: 53–60.

Mascarin GM, Alves SB, & Lopes RB. 2010. Culture media selection for mass production of Isaria fumosorosea and Isaria farinosa. Braz. Arch. Biol. Technol. 53(4): 753–761.

Maude RB, Vizor AS, & Shuring CG., 1969. The control of fungal seed-borne diseases by means of a thiram seed soak. Annals of Applied Biology 64(2): 245–257.

Mishra RS & Chauvey AN. 2018. Chilli leaf curl virus and its management. Acta Sci. Agric. 2(3): 24–28.

Molnar I, Gibson DM, & Krasnoff SB. 2010. Secondary metabolites from entomopathogenic Hypocrealean fungi. Nat. Prod. Rep. 27: 1241–1275.

Nuryani W, Yusuf ES, Djatnika I, Hanudin, & Marwoto B. 2011. Pengendalian penyakit layu fusarium pada subang gladiol dengan pengasapan dan biopestisida. J. Hort. 21(1): 40–50.

Perry L, Dickau R, Zarrillo S, Holst I, Pearsall DM, Piperno DR, Berman MJ, Cooke RG, Rademaker K, Ranere AJ, Raymond JS, Sandweiss DH, Scaramelli F, Tarble K, & Zeidler JA. 2007. Starch fossils and the domestication and dispersal of chili peppers (Capsicum spp. L.) in the Americas. Science. 315(5814): 986–988.

Rao MPN, Xiao M, & Li WJ. 2017. Fungal and bacterial pigments: secondary metabolites with wide applications. Front. Microbiol. 8: 1113.

Safavi SA. 2010. Isolation, identification and pathogenicity assessment of a new isolate of entomopathogenic fungus, Beauveria bassiana in Iran. J. Plant Prot. Res. 50(2): 158–162.

Samarah NH, Wang H, & Welbaum GE. 2016. Pepper (Capsicum annuum) seed germination and vigour following nanochitin, chitosan or hydropriming treatments. Seed Sci. Technol. 44(3): 1–15.

Soesanto L. 2014. Metabolit sekunder agensia pengendali hayati: terobosan baru pengendalian organisme pengganggu tanaman perkebunan. Fakultas Pertanian. Universitas Jenderal Soedirman. https://www.researchgate.net/publication/278261729. Accessed on 8 October 2018.

Subban R & Sundaram K. 2012. Effect of antiviral Formulations on Chilli leaf curl virus (CLCV) disease of chilli plant (Capsicum annuum L). J. Pharm. Res. 5(12): 1–4.

Sugiura M, Bandaranayake CM, & Hemachandra GH. 1975. Chili virus diseases in Sri Lanka. Technical Bulletin TARC No. 8. Tropical Agriculture Research Center, Ibaraki.

Suryanto D, Patonah S, & Munir E. 2010. Control of Fusarium wilt of chili with chitinolytic bacteria. HAYATI J. Biosci. 17(1): 5–8.

Taufik M, Sarawa, Hasan A, & Amelia K. 2013. Analisis pengaruh suhu dan kelembapan terhadap perkembangan penyakit Tobacco mosaic virus pada tanaman cabai. Jurnal Agroteknos. 3(2): 94–100.

Thakur H, Jindal SK, Sharma A, & Dhaliwal MS. 2018. Chilli leaf curl virus disease: a serious threat for chilli cultivation. J. Plant Dis. Protect. 125: 239–249.

Widariyanto R, Pinem MI, & Zahara F. 2017. Patogenisitas beberapa cendawan entomopatogen (Lecanicillium lecanii, Metarhizium anisopliae dan Beauveria bassiana) terhadap Aphis glycines pada tanaman kedelai. Jurnal Agroekoteknologi. 5(1): 8–16.




DOI: http://dx.doi.org/10.23960/j.hptt.220100-107

Refbacks

  • There are currently no refbacks.


web
counter

View My Stats

Statistics Counter since 15 January 2016

Flag Counter
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.