CHARACTERIZATIONS OF Trichoderma sp. AND ITS EFFECT ON Ralstonia solanacearum OF TOBACCO SEEDLINGS
DOI:
https://doi.org/10.23960/j.hptt.1218-19Keywords:
bacterial wilt, characterization, Ralstonia solanacearum, Trichoderma sp. Tc-Jjr-02Abstract
References
Abdulmyanova LI, Teomashko NN, Terentyeva EO, Ruzieva DM, Sattarova RS, Azimova SS, & Gulyamova TG. 2015. Cytotoxic activity of fungal endophytes from Vinca. Int. J. Curr. Microbiol. App. Sci. 4(7): 321–329.
Anam GB, Reddy MS, & Ahn YH. 2019. Characterization of Trichoderma asperellum RM-28 for its sodic/saline-alkali tolerance and plant growth promoting activities to alleviate toxicity of red mud. Sci. Total Environ. 662: 462–469.
Araka GO, Ochora J, & Wakhisi J. 2016. Larvicidal efficacy of crude essential oil (leaf extracts) of pyrethrum (Chrysanthemum: Compositae), Eucalyptus camaldulensis Sm (Myrtaceae) and Nicotiana tabaccum (Tobacco L.) (Solanaceace) against third instar larvae of the malaria vector Anopheles gambiae s.s. Giles (Diptera: Culicidae). Int. J. Sci. Res. 5(3): 370–375.
Baiyee B, Ito S, & Sunpapao A. 2019. Trichoderma asperellum T1 mediated antifungal activity and induced defense response against leaf spot fungi in lettuce (Lactuca sativa L.). Physiol. Mol. Plant Pathol. 106: 96–101.
Buysens C, César V, Ferrais F, de Boulois HD & Declerck S. 2016. Inoculation of Medicago sativa cover crop with Rhizophagus irregularis and Trichoderma harzianum increases the yield of subsequently-grown potato under low nutrient conditions. Appl. Soil Ecol. 105: 137–143.
Chowdappa P, Kumar SPM, Lakshmi MJ, & Upreti KK. 2013. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol. Control. 65(1): 109–117.
Colla G, Rouphael Y, Mattia ED, El-Nakhel C, & Cardarelli M. 2015. Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as abiostimulant to promote growth, yield and nutrient uptake of vegetable crops. J. Sci. Food Agric. 95(8): 1706–1715.
Damalas CA & Eleftherohorinos IG. 2011. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health. 8(5): 1402–1419.
Daniel H. 2011. Benefits of tobacco. http://benefitof.net/benefits-of-tobacco/. Accessed on 24 April 2020.
[EMPPO] European and Mediterranean Plant Protection Organization. 2004. Diagnostic protocols for regulated pests: Ralstonia solanacearum. Bulletin OEPP/EPPO Bulletin. 34(2): 173–178.
Fan H, Song B, Bhadury PS, Jin L, Hu D, & Yang S. 2011. Antiviral activity and mechanism of action of novel thiourea containing chiral phosphonate on Tobacco Mosaic Virus. Int. J. Mol. Sci. 12(7): 4522–4535.
Farsalinos KE, Poulas K, Voudris V, & Le Houezec J. 2016. Electronic cigarette use in the European Union: analysis of a representative sample of 27 460 Europeans from 28 countries. Addiction. 111(11): 2032–2040.
Fauzantoro A, Muharam Y, & Gozan M. 2017. Improvement of nicotine yield by ethanolic heat reflux extraction of Nicotiana tabacum var. virginia origin of Ponorogo. Int. J. Appl. Eng. Res. 12(23): 13891-13897.
Fierer N, Jackson JA, Vilgalys R, & Jackson RB. 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. & Environ. Microb. 71(7): 4117–4120.
Gams W & Bissett J. 2002. Morphology and identification of Trichoderma. In: Kubicek CP & Harman GE (Eds.). Trichoderma and Gliocladium, Volume 1: Basic Biology, Taxonomy and Genetics. pp. 3–34. Taylor & Francis Ltd. London.
Gava CAT & Pinto JM. 2016. Biocontrol of melon wilt caused by Fusarium oxysporum Schlect f. sp. melonis using seed treatment with Trichoderma spp. and liquid compost. Biol. Control. 97: 13–20.
Giehl RFH & von Wirén N. 2014. Root nutrient foraging. Plant Physiol. 166(2): 509–517.
Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J, Marrone P, Morin L, & Stewart A. 2012. Have biopesticides come of age? Trends Biotechnol. 30(5): 250–258.
Gil SV, Pastor S, & March GJ. 2009. Quantitative isolation of biocontrol agents Trichoderma spp. Gliocladium spp. and Actinomycetes from soil with culture media. Microbiol. Res. 164(2): 196–205.
Gutarra L, Herrera J, Fernandez E, Kreuze J, & Lindqvist-Kreuze H. 2017. Diversity, pathogenicity, and current occurrence of bacterial wilt bacterium Ralstonia solanacearum in Peru. Front. Plant Sci. 8: 1221.
He A, Liu J, Wang X, Zhang Q, Song W, & Che J. 2019. Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize. J. Integr. Agric. 18(3): 599–606.
Hewedy OA, Lateif KSA, Seleiman MF, Shami A, Albarakaty FM, & El-Meihy RM. 2020. Phylogenetic diversity of Trichoderma strains and their antagonistic potential against soil-borne pathogens under stress conditions. Biology. 9(8): 189.
Hu X, Roberts DP, Xie L, Yu C, Li Y, Qin L, Hu L, Zhang Y, & Liao X. 2016. Use of formulated Trichoderma sp. Tri-1 in combination with reduced rates of chemical pesticide for control of Sclerotinia sclerotiorium on oilseed rape. Crop Prot. 79: 124–127.
Hu X, Roberts DP, Xie L, Maul JE, Yu C, Li Y, Zhang Y, Qin L, & Liao X. 2015. Components of a rice-oilseed rape production system augmented with Trichoderma sp. Tri-1 control Sclerotinia sclerotiorum on oilseed rape. Phytopathology. 105(10): 1325–1333.
Huang J, Wei Z, Tan S, Mei X, Yin S, Shen Q, & Xu Y. 2013. The rhizosphere soil of diseased tomato plants as a source for novel microorganisms to control bacterial wilt. Appl. Soil Ecol. 72: 79–84.
Jallow MFA, Awadh DG, Albaho MS, Devi VY, & Thomas BM. 2017. Pesticide knowledge and safety practices among farm workers in Kuwait: results of a survey. Int. J. Environ. Res. Public Health. 14(4): 340.
Jiang G, Wei Z, Xu J, Chen H, Zhang Y, She X, Macho AP, Ding W, & Liao B. 2017. Bacterial wilt in China: history, current status, and future perspectives. Front. Plant Sci. 8: 1549.
Karuppiah V, Sun J, Li T, Vallikkannu M, & Chen J. 2019. Co-cultivation of Trichoderma asperellum GDFS1009 and Bacillus amyloliquefaciens 1841 causes differential gene expression and improvement in the wheat growth and biocontrol activity. Front. Microbiol. 10: 1068.
Khan M, Subramaniam R, & Desveaux D. 2016. Of guards, decoys, baits and traps: pathogen perception in plants by type III effector sensors. Curr. Opin. Microbiol. 29: 49–55.
Kheirandish Z & Harighi B. 2015. Evaluation of bacterial antagonists of Ralstonia solanacearum, causal agent of bacterial wilt of potato. Biol. Control. 86: 14–19.
Kumar S, Stecher G, Li M, Knyaz C, & Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6): 1547–1549.
Laeshita P & Arwiyanto T. 2017. Resistance test of several tomato varieties to bacterial wilt diseases caused by Ralstonia solanacearum. Jurnal Perlindungan Tanaman Indonesia. 21(1): 51–53.
Levy DT, Borland R, Lindblom EN, Goniewicz ML, Meza R, Holford TR, Yuan Z, Luo Y, O’Connor RJ, Niaura R, & Abrams DB. 2017. Potential deaths averted in USA by replacing cigarettes with e-cigarettes. Tob Control. 27(1): 18–25.
Leylaie S & Zafari D. 2018. Antiproliferative and antimicrobial activities of secondary metabolites and phylogenetic study of endophytic Trichoderma species from Vinca plants. Front. Microbiol. 9: 1484.
Li C, Yu J, Gan L, Sun J, Wang C, Wang Q, Chen S, & Yang Y. 2018. Effects of tobacco pathogens and their antagonistic bacteria on tobacco root exudates. Open J. Appl. Sci. 8: 518–531.
Li L, Feng X, Tang M, Hao W, Han Y, Zhang G, & Wan S. 2014. Antibacterial activity of Lansiumamide B to tobacco bacterial wilt (Ralstonia solanacearum). Microbiol. Res. 169(7–8): 522–526.
Li X, Liu Y, Cai L, Zhang H, Shi J, & Yuan Y. 2017. Factors affecting the virulence of Ralstonia solanacearum and its colonization on tobacco roots. Plant Pathol. 66(8): 1345–1356.
Li Y, Feng J, Liu H, Wang L, Hsiang T, Li X, & Huang J. 2016. Genetic diversity and pathogenicity of Ralstonia solanacearum causing tobacco bacterial wilt in China. Plant Dis. 100(7): 1288–1296.
López-Bucio J, Pelagio-Flores R, & Herrera-Estrella A. 2015. Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic. 196: 109–123.
Lu Y, Rao S, Huang F, Cai Y, Wang G, & Cai K. 2016. Effects of biochar amendment on tomato bacterial wilt resistance and soil microbial amount and activity. Int. J. Agron. 2016: 2938282.
[NCBI] National Center for Biotechnology Infromation. 2020. Basic Logical Alignment Search Tool. http://www.ncbi.nlm.nih.gov/BLAST. Accessed on 1 February 2020.
Martínez-Medina A, Alguacil MDM, Pascual JA, & Van Wees SCM. 2014. Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. J. Chem. Ecol. 40(7): 804–815.
Mutimawurugo MC, Wagara IN, Muhinyuza JB, & Ogweno JO. 2019. Virulence and characterization of isolates of potato bacterial wilt caused by Ralstonia solanacearum (Smith) in Rwanda. Afr. J. Agric. Res. 14(6): 311–320.
Pruksakorn P, Arai M, Kotoku N, Vilchèze C, Baughn AD, Moodley P, Jacobs WR Jr, & Kobayashi M. 2010. Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorg. Bioorganic Med. Chem. Lett. 20(12): 3658–3663.
Raheem A, Khan N, & Ali S. 2016. Influence of fungicide on post emergence of damping-off in tobacco (Nicotiana tobacum L.) nursery. Int. J. Cur. Res. 8(7): 34624–34629.
Rubio MB, Quijada NM, Pérez E, Domínguez S, Monte E, & Hermosa R. 2014. Identifying beneficial qualities of Trichoderma parareesei for plants. Appl. Environ. Microbiol. 80(6): 1864–1873.
Saravanakumar K, Yu C, Dou K, Wang M, Li Y, & Chen J. 2016. Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. cucumerinum. Biol. Control. 94: 37–46.
Shang J, Liu B, & Xu Z. 2020. Efficacy of Trichoderma asperellum TC01 against anthracnose and growth promotion of Camellia sinensis seedlings. Biol. Control. 143: 104205.
Singh A, Shukla N, Kabadwal BC, Tewari AK, & Kumar J. 2018. Review on plant-Trichoderma-pathogen interaction. Int. J. Curr. Microbiol. App. Sci. 7(2): 2382–2397.
Sutarman, Prihatiningrum AE, Sukarno A, & Miftahurrohmat A. 2018. Initial growth response of shallot on Trichoderma formulated in oyster mushroom cultivation waste. IOP Conf. Ser.: Materials Sci. Eng. 420: 012064.
Sutarman. 2019. Application of Trichoderma harzianum as soil treatment and additional treatment for control of potato diseases. J. Agric. Sci. 2(2): 139–150.
Tahir HAS, Gu Q, Wu H, Niu Y, Huo R, & Gao X. 2017. Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci. Rep. 7: 40481.
Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo LW, & Lorito M. 2008. Trichoderma–plant–pathogen interactions. Soil Biol. Biochem. 40(1): 1–10.
Vinale F, Sivasithamparam K, Ghisalberti EL , Woo SL, Nigro M, Marra R, Lombardi N, Pascale A, Ruocco M, Lanzuise S, Manganiello G, & Lorito M. 2014. Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol. J. 8: 127–139.
Vinodkumar S, Indumathi T, & Nakkeeran S. 2017. Trichoderma asperellum (NVTA2) as a potential antagonist for the management of stem rot in carnation under protected cultivation. Biol. Control. 113: 58–64.
Wei Y, Sang Y, & Macho AP. 2017. The Ralstonia solanacearum Type III effector RipAY is phosphorylated in plant cells to modulate Its enzymatic activity. Front. Plant Sci. 8: 1899.
Wei Z, Huang JF, Hu J, Gu YA, Yang CL, Mei XL, Shen QR, Xu YC, & Friman VP. 2015. Altering transplantation time to avoid periods of high temperature can efficiently reduce bacterial wilt disease incidence with tomato. PLoS ONE. 10(10): e0139313.
White TJ, Bruns T, Lee S, & Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, & White TJ (Eds.). PCR Protocols: a guide to Methods and Applications. pp. 315–322. Academic Press, New York.
Widmer TL. 2014. Screening Trichoderma species for biological control activity against Phytophthora ramorum in soil. Biol. Control. 79: 43–48.
Wu X, Li H, Wang Y, & Zhang X. 2020. Effects of bio-organic fertiliser fortified by Bacillus cereus QJ-1 on tobacco bacterial wilt control and soil quality improvement. Biocontrol Sci. Technol. 30(4): 351–359.
Yedidia I, Benhamou N, Kapulnik Y, & Chet I. 2000. Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol. Biochem. 38(11): 863–873.
Yuan S, Li M, Fang Z, Liu Y, Shi W, Pan B, Wu K, Shi J, Shen B, & Shen Q. 2016. Biological control of tobacco bacterial wilt using Trichoderma harzianum amended bioorganic fertilizer and the arbuscular mycorrhizal fungi Glomus mosseae. Biol. Control. 92: 164–171.
Zeilinger S, Gruber S, Bansal R, & Mukherjee PK. 2016. Secondary metabolism in Trichoderma-chemistry meets genomics. Fungal Biol. Rev. 30(2): 74–90.
Zhao L, Liu Q, Zhang Y, Cui Q, & Liang Y. 2017. Effect of acid phosphatase produced by Trichoderma asperellum Q1 on growth of Arabidopsis under salt stress. J. Integr. Agric. 16(6): 1341–1346.
Downloads
Published
Issue
Section
License

Jurnal Hama dan Penyakit Tropika (JHPT Tropika) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

