KELIMPAHAN BAKTERI RIZOSFER PADA SISTEM PHT-BIOINTENSIF SERTA KEMAMPUAN ANTAGONISMENYA TERHADAP Sclerotium rolfsii PADA KEDELAI

Authors

  • Abdjad Asih Nawangsih Departemen Proteksi Tanaman Fakultas Pertanian Institut Pertanian Bogor Jl. Kamper Kampus IPB Dramaga Bogor, 16680
  • Tita Widjayanti . Departemen Proteksi Tanaman Fakultas Pertanian Institut Pertanian Bogor Jl. Kamper Kampus IPB Dramaga Bogor, 16680
  • Yana Anisa . Departemen Proteksi Tanaman Fakultas Pertanian Institut Pertanian Bogor Jl. Kamper Kampus IPB Dramaga Bogor, 16680

DOI:

https://doi.org/10.23960/j.hptt.214110-120

Keywords:

Anjasmoro, Bacillus subtilis, biological control, Gepak kuning, PGPR

Abstract

Abundance of rhizospheric bacteria on the IPM-Biointensive system and their antagonistic activities toward Sclerotium rolfsii on soybean.  Abundance of beneficial microorganisms in the soil is one of the active soil indicators the success of integrated pests management (IPM) system.  Some beneficial groups of microorganisms can be used as biocontrol agents.  This experiment was conducted to evaluate the effects of IPM-Biointensive by integrated application of resistant varieties, rice-straw mulch, and biocontrol agents on the abundance of rizospheric bacteria of soybean, also to evaluate the suppressiveness of the bacteria to the mycelial growth of S. rolfsii in vitro.  Abundance of the bacteria was determined by isolation using serial dilution and plate-count techniques.  Suppression to the fungus was evaluated using dual culture technique.  Heat tolerant bacteria had the highest abundance (ranged 1011-1012 cfu/g soil), followed by non-fluorescence bacteria (1011 cfu/g soil), chitinolytic bacteria (106-109 cfu/g soil), and fluorescence bacteria with population range was 103-108 cfu/g soil.  Gepak kuning variety grown with application of rice-straw mulch and PGPR (V2M1P1) caused the highest abundance of rizosphere bacteria.  One of the heat tolerant bacteria, i.e. TP32, caused the highest suppression to the mycelial growth of S. rolfsii in vitro.  Based on the morphology, physiology, and biochemical properties, the isolate was identified as Bacillus sp. 

References

Arwiyanto T, Sudarmadi, & Hartana I. 1999. Deteksi strain Pseudomonas solanacearum penghasil bakteriosin. J. Perlintan Indonesia. 2(2): 60–65.

Atlas RM. 2005. Handbook of Media for Environmental Microbiology, 2nd Edition. USA: CRC Press.

Baker KF & Cook RJ. 1983. Biological Control of Plant Pathogen. Freeman and Co, San Fransisco, California.

Bolan NS. 1991. A critical review of the role of mycorrhizae fungi in the uptake of phosphorus by plants. J. Plant and Soil 134: 189–207.

Brzezinska MS & Donderski W. 2001. Occurance and activity of the chitinolytic bacteria of Aeromonas genus. Polish J. Enviro Studies 10(1): 27–31.

Chernin LS, Michael KW, Jacquelyn MT, Shoshan H, Barrie WB, Cheat W, Gordon SAB, & Stewart. 1998. Chitinolytic activity in Chromobacterium violaceum. J. Bacteriol. 180: 4435–4441.

Compant S, Duffy B, Nowak J, Clement C, & Barka EA. 2005. Mini review: Use of plant growth-promoting rhizobacteria for biocontrol of plant diseases: principles, mecanisms of action and future prospects. Appl. Environ. Microbiol. 71: 4951-4959.

Ganesan S, Kuppusamy RG, & Sekar R. 2007. Integrated management of stem rot disease (Sclerotium rolfsii) of groundnut (Arachis hypogaea L.) using rhizobium and Trichoderma harzianum (ITCC-4572). Turk. J. Agric. For. 31(2): 103–108.

Gao JMW, Bauer KR, Shockley MA, Pysz RM., & Kelly. 2003. Growth of Hiperthermophilic Archaeon Pyrococcus furiosus on Chitin Involves Two Family 18 Chitinases. J. Appl. Environ Microbiol. 69: 319–328.

Graham J. 2005. Biological Control of Soilborne Plant Pathogens and Nematodes 2nd Ed. Pearson Education Inc.New Jersey.

Mariani. 1995. Isolasi dan seleksi bakteri filosfer yang berpotensi untuk biokontrol Xanthomonas campestris pv. glycines 8 Ra pada tanaman kedelai dengan esei nukleasi es. Bogor: Jurusan Biologi, Fakultas MIPA IPB.

Metcalfe AC, Krsek M, Gooday GW, Prosser JI, & Wellington EM. 2002. Molecular analysis of a bacterial chitinolytic community in an upland pasture. J. Appl. Environ. Microbiol. 68(10): 5042–5050.

Mishra DS, Gupta AK, Prajapati CR, & Singh US. 2011. Combination of fungal and bacterial antagonists for management of root and stem rot disease of soybean. Pak. J. Bot. 43(5): 2569–2574.

Nawangsih AA. 2006. Seleksi dan karakterisasi bakteri biokontrol untuk mengendalikan penyakit layu bakteri (Ralstonia solanacearum) pada tomat. [Disertasi]. Program Pascasarjana, Institut Pertanian Bogor, Bogor.

Oke DO & Ologun. 2005. Effect of mulch from four agroforestry species on the moisture content, temperature and microbial population in a humid tropical soil. J. Microbiol Scie 5(3): 326-329.

Paramageetham CH & Babu GP. 2012. Antagonistic activity of fluorescent Pseudomonads against a polyphagous soil borne plant pathogen – Sclerotium rolfsii. 1(9): 436. Doi:10.4172/scientificreports.436.

Patil NN, Nawani NN, Thakkar AP, & Kapadnis BP. 2004: Diversity of chitinolytic systems of bacteria. In: Biotechnological approaches for sustainable development. India: Allied Publishers.

Pelczar MJJr & Chan ECS. 1986. Dasar-dasar Mikrobiologi. Volume ke-1,2. Hadioetomo RS, Imas T, Tjitrosomo SS, Angka SL, penerjemah. Jakarta :UI Pr; 1986. Terjemahan dari: Elements of Microbiology.

Pleban S, Chemin L, & Chet I. 1997. Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett. J. Appl. Microbiol. 25(4): 284–288.

Sakai K, Yokota A, Kurokawa H, Wakayama M, & Moriguchi M. 1998. Purification and characterization of three thermostable endochitinases of a noble Bacillus strain, MH-1, isolated from chitin-containing compost. Appl. Environ. Microbiol. 64(9): 3397–3402.

Salle AJ. 1973. Fundamental Principles of Bacteriology. 7th edition. Tata McGraw-Hill Publishing Company. New Delhi.

Schaad NW. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria 3rd Ed. Minnesota: APS Press. St. Paul.

Sudjono MS. 1997. Karakteristik Mikroba Penghasil Kitinase dan Kloning Gen Kitinase dan gen Cry dari Mikroba di Indonesia. Balai Penelitian Bioteknologi Tanaman Pangan.Bogor.

Thompson SE, Smith M, Wilkinson MC, & Peek K. 2001. Identification and characterization of a chitinase antigen from Pseudomonas aeruginosa strain 385. Appl. Environ. Microbiol. 67(9): 4001-4008.

Vogan CL, Costa RC, & Rowley AF. 2002. Shell disease syndrome in the edible crab, cancer pagurus – isolation, characterization and pathogenicity of chitinolytic bacteria. J. Microbiol. 148: 743–754.

Wang SL & Chang WT. 1997. Purification and characterization of two bifunctional chitinases/lisozymes extracellularly produced by Pseudomonas aeruginosa K-187 in shrimp and scrab shell powder medium. Appl. Environ. Microbiol. 63(2): 380–386.

Wartono. 2010. Studi Keefektifan Formulasi Spora Bacillus subtilis sebagai Agens Pengendali Hayati Penyakit Hawar Daun Bakteri dan Hawar Pelepah Serta Pemicu Pertumbuhan pada Tanaman Padi [Tesis]. Program Pascasarjana, Institut Pertanian Bogor, Bogor.

Wu ML, Chuang YC, Chen JP, Chen CS, & Chang MC. 2001. Identification and characterization of the three chitin-binding domains within the multidomain chitinase Chi92 from Aeromonas hydrophila JP101. Appl. Environ. Microbiol. 67(1): 5100-5106.

Yeh E, Pinsky BA, Banaei N, & Baron EJ. 2009. Hair sheep blood, citrated or defibrinated, fulfills all requirements of blood agar for diagnostic microbiology laboratory tests. J. Med. 4(7): 6141.

Downloads

Published

2014-06-15
Read Counter : 448 times
PDF Download : 310 times