COMPARATIVE BIOACTIVITY OF PLANT EXTRACTS AND SYNTHETIC INSECT GROWTH REGULATORS AGAINST Spodoptera litura (F.) (LEPIDOPTERA: NOCTUIDAE)

Main Article Content

Rosma Hasibuan
Purnomo Purnomo
Lestari Wibowo
Izzaturrijal Izzaturrijal
Jamalam Lumbanraja

Abstract

Laboratory bioassays were conducted to compare the effects of the leaf extract of Acalypha indica  L. (Euphorbiaceae) with synthetic insect growth regulators (IGRs) triflumuron and buprofezin against Spodoptera litura (F.). The experiment was set up as a randomized complete block design (RCBD). The treatments were two concentrations of  A. indica extracts 1000 and 2000 ppm, two concentrations of  buprofezin 100 and 200 ppm, two  concentrations of triflumuron 120 and 240 ppm and control. Each treatment was replicated three times. Second instar larva of  S. litura  were used for the bioassays.  Mortality and biological variables of treated and control larvae were recorded daily. The results indicated that the application of A. indica extracts  and synthetic IGRs (buprofezin & triflumuron) significantly caused the S. litura  mortality throughout the experimental period. At first, the toxicity of triflumuron on larval S. litura was significantly higher compared to those of buprofezin and Acalypha indica leaf extract. However, at the end of experimental period all treatments caused high mortality on S. litura, and those all were significantly different from control. The treatments also caused abnorrmal growth in larval, pupal, and adult stages. While in the control, larvae molted into normal adults. The results indicated that the use of biorational control agents such as synthetic insect growth regulators (IGRs) and those based on naturally derived products such as botanical insecticides show promise as a potential tool in S. litura management programs.

Article Details

How to Cite
(1)
Hasibuan, R.; Purnomo, P.; Wibowo, L.; Izzaturrijal, I.; Lumbanraja, J. COMPARATIVE BIOACTIVITY OF PLANT EXTRACTS AND SYNTHETIC INSECT GROWTH REGULATORS AGAINST Spodoptera Litura (F.) (LEPIDOPTERA: NOCTUIDAE). J Trop Plant Pests Dis 2019, 19, 118-126.


Section
Articles

References

Abdel-Monem AH, Cameron EA, & Mumma RO. 1980. Toxicological studies on the molt inhibiting insecticide (EL- 494) against the gypsy moth and effect on chitin biosynthesis. J. Econ. Entomol. 73(1): 22–25.

Ahmad M, Arif MI, & Ahmad M. 2007. Occurrence of insecticide resistance in field populations of Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan. Crop Prot. 26(6): 809–817.

Ahmad M, Ghaffar, & Rafiq M. 2013. Host plants of leaf worm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) in Pakistan. Asian J. Agri. Biol. 1(1): 23–28.

Ahmed SM, Chander H, & Pereira J. 1981. Insecticidal potentials and biological activity of Indian indigenous plants against Musca domestica L. Int. Pest Control. 23(6): 170–175.

Aitkenhead P, Baker CRB, & Chickera GWD. 1974. An outbreak of Spodoptera litura, a new pest under glass in Britain. Plant Pathol. 23(3): 117–118.

Ashwini U, Taju G, Thirunavukkarasu P, & Asha. 2017. Pupal emergence inhibition activity of Acalypha indica leaf extract against dengue vector, Aedes albopictus mosquito. Int. J. Pharm. Sci. 9(8): 114–118.

Badawy MEI, Kenawy A, & El-Aswad AF. 2013. Toxicity assessment of buprofezin, lufenuron, and triflumuron to the Earthworm Aporrectodea caliginosa. Int. J. Zool. 20(13): 1–9.

Bae SD & Park KB. 1999. Effects of temperature and food source on pupal development, adult longevity and oviposition of the tobacco cutworm, Spodoptera litura Fabricius. Korean J. Appl. Entomol. 38(1): 23–28.

Brown ES & Dewhurst CF. 1975. The genus Spodoptera in Africa and the near East. Bull. Entomol. Res. 65(2): 221–262.

Chen CN & Hsiao HF. 1984. Influence of food and temperature on life history traits and population parameters of Spodoptera litura Fabricius. Plant Prot. Bull. 26: 219–229.

Das G. 2013. Inhibitory effect of buprofezin on the progeny of rice weevil, Sitophilus oryzae L. (Coleoptera: Curculionidae). J. Biofertil Biopestic. 4(2): 1–5.

Das G & Islam T. 2014 Mortality and growth inhibition of brinjal shoot and fruit borer, Leucinodes orbonalis (Guen.) by buprofezin, a potent chitin synthesis inhibitor. J. Entomol. Zool. Stud. 2(6): 282–287.

Dhadialla TS, Carlson GR, & Le DP. 1998. New insecticides with ecdysteroidal and juvenile hormone activity. Annu. Rev. Entomol. 43: 545–569.

Ecobichon DJ. 1996. Toxic effects of pesticides. In: Klaassen CD & Doull J (Eds.). Toxicology: The Basic Science of Poisons. 5th edition. pp. 643–689. MacMillan, New York.

Fattah A. 2016. Siklus hidup S. litura (Spodoptera litura, F) dan tingkat serangan pada beberapa varietas unggul kedelai di Sulawesi Selatan. Prosiding Seminar Nasional Inovasi Teknologi Pertanian. pp. 834–842. Banjarbaru.

Farrar JJ, Ellsworth PC, Sisco R, Baur ME, Crump A, Fournier AJ, Murray MK, Jepson PC, Tarutani CM, & Dorschner KW. 2018. Assessing compatibility of a pesticide in an IPM Program. J. Integr. Pest Manag. 9(1): 1–6.

Garad GP, Shivpuje PR, & Bilapate GG. 1985. Larval and post-larval development of Spodoptera litura (Fabricius) on some hostplants. Proc. Indian Acad. Sci. 94(1): 49–56.

Gaur SK & Kumar K. 2019. A comparative bioefficacy of seed and root extracts of a medicinal plant, Withania somnifera when administered to prepupae of lepidopteran insects, Spodoptera litura (Lepidoptera: Noctuidae) and Pericallia ricini (Lepidoptera: Arctiidae). J. Basic Appl. Zool. 80(37): 1–15.

Ghumare SS & Mukherjee SN. 2003. Performance of Spodoptera litura (Fabricius) on different host plants: influence of nitrogen and total phenolics of plants and midgut esterase activity of the insect. Indian J. Exp. Biol. 41(8): 895–899.

Govindarajan M, Jebanesan A, & Pushpanathan T. 2008. Studies on effect of Acalypha indica L. (Euphorbiaceae) leaf extracts on the malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res. 103(3): 691–695.

Ishaaya I, Mendelson Z, & Melamed-Madjar V. 1998. Effect of buprofezin on embryo genesis and progeny formation of sweet potato whitefly (Homoptera: Aleyrodidae). J. Econ. Entomol. 81(3): 781–784.

Izawa Y, Uchida M, Sugimoto T, & Asai T. 1985. Inhibition of chitin biosynthesis by buprofezin analogs in relation to their activity controlling Nilaparvata lugens Stal. Pestic. Biochem. Phys. 24(3): 343–347.

Jepson PC, Guzy M, Blaustein K, Sow M, Sarr M, Mineau P, & Kegley S. 2014. Measuring pesticide ecological and health risks in West African agriculture to establish an enabling environment for sustainable intensification. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369(1639): 1–18.

Kalshoven LGE. 1981. The Pets of Crops in Indonesia. PT. Ichtiar Baru Van Hoeve, Jakarta.

Kamalakannan S, Murugan K, & Chandramohan B. 2015. Insect growth regulatory activity of Acalypha alnifolia (Euphorbiaceae) and Vitex negundo (Verbenaceae) leaf extracts against Aedes aegypti (Diptera: Culicidae). Int. J. Mosq. Res. 2(1): 47–52.

Kanaoka A,Yamaguchi R, & Konno T. 1996. Effect of buprofezin on oviposition of brown planthopper, Nilaparvata lugens, at sub-lethal dose. J. Pesticide Sci. 21(2): 153–157.

Karimzadeh R, Hejazi MJ, Rahimzadeh KF, & Moghaddam M. 2007. Laboratory evaluation of five chitin synthesis inhibitors against the Colorado potato beetle, Leptinotarsa decemlineata. J. Insect Sci. 7: 1–6.

Khan MAM. 2016. Efficacy of insect growth regulator buprofezin against papaya mealybug. JEZS. 4(4): 730–733.

Khatter NA. 2015. Chitinase gene mutations induced by two insect growth regulators in Spodoptera littoralis (Lepidoptera: Noctuidae). Life Sci. J. 12(1): 229–238.

Khatun MR, Das G, & Ahmed KS. 2017. Potentiality of buprofezin, an insect growth regulator on the mortality of Spodoptera litura (Fabricius). JEZS. 5(2): 736–740.

Liburd OE, Funderburk JE, & Olson SM. 2000. Effect of biological and chemical insecticides on Spodoptera species (Lepidoptera: Noctuidae) and marketable yields of tomatoes. J. App. Entomol. 124(1):19–25.

Manibala J & Praveena A. 2017. A comparative study on the effect of pheromone baited traps and Acalypha indica extract on Leucinodes orbonalis. Intl. J. Bioinforma. Biol. Sci. 5(2): 127–134 .

Marwoto & Suharsono. 2008. Strategi dan komponen teknologi pengendalian ulat grayak (Spodoptera litura Fabricius) pada tanaman kedelai. J. Litbang Pertanian. 27(4): 131–136.

Merzendorfer H & Zimoch L. 2003. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J. Expt. Biol. 206(Pt 24): 4393–4412.

Mohan SC, Dinakar S, Anand T, Elayaraja R, & Priya BS. 2012. Phytochemical, GC-MS analysis and Antibacterial activity of a Medicinal Plant Acalypha indica. Int. J. Pharm.Tech. Res. 4(3): 1050–1054.

Nasr HM, Badawy EI, & Rabea EI. 2010. Toxicity and biochemical study of two insect growth regulators, buprofezin and pyriproxifen, on cotton leafworm Spodoptera littoralis. Pestic. Biochem. Physiol. 98(2): 198–205.

Nazri NNM, Hazali N, Ibrahim M, Masri M, & Ayo MK. 2016. Preliminary studies on Acalypha indica: proximate analysis and phytochemical screening. Int. J. Pharm.Sci. 8(3): 406–408.

Onstad DW, Crespo ALB, Pan Z, Crain PR, Thompson SD, Pilcher CD, & Sethi A. 2018. Blended refuge and insect resistance management for insecticidal corn. Environ. Entomol. 47(1): 210–219.

Perry AS, Yamamoto I, Ishaaya I, & Perry RY. 1998. Insecticides In Agriculture and Environment: Retrospects and Prospects. Springer, Berlin, Germany.

Pratiwi D, Prahastiwi EA, & Safitri M. 2015. Uji aktivitas larvasida ekstrak etil asetat herba anting-anting (Acalypha indica L.) terhadap larva nyamuk Aedes aegypti. J. Farmagazine. 2(1): 1–8.

Rao GVR, Wightman JA, & Ranga RDV. 1993. World review of the natural enemies and diseases of Spodoptera litura (F.) (Lepidoptera: Noctuidae). Insect Sci. Appl. 14(3): 273–284.

Retnakaran A, Granett J, & Ennis T. 1985. Insect growth regulators. In: Kerkut GA & Gilbert LI (Eds.). Comprehensive Insect Physiology, Biochemistry, and Pharmacology. pp. 529–601. Academic Press, New York.

Sahayaraj K & Shoba J. 2012. Toxic effect of Tephrosia purpurea (Linn.) and Acalypha indica (Linn.) aqueous extracts impact on the mortality, macromolecules, intestinal electrolytes and detoxication enzymes of Dysdercus cingulatus (Fab.). Asian J. Biochem. 7(3): 112–122.

Shahout H, Xu J, Yao X, & Jia Q. 2011. Influence and mechanism of different host plants on the growth, development and, fecundity of reproductive system of common cutworm Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Asian J. Agric. Sci. 3(4): 291–293.

Sharma A & Gupta RK. (2009). Biological activity of some plant extracts against Pieris brassicae (Linn.). J. Biopesticid. 2(1): 26–31.

Uchida M, Asai T, & Sugimoto T. 1985. Inhibition of cuticle deposition and chitin biosynthesis by a new insect growth regulator buprofezin in Nilaparvata lugens. Stal. Agric. Biol. Chem. 49(4): 1233–1234.

Xavier GSA, Selvaraj P, & John N. 2016. Impact of phytoecdysone fractions of the ferns Cyclosorous interruptus, Christella dentata and Nephrolepis cordifolia on the biology of Spodoptera litura (Fab.). J. Biopest 9(2): 125–134.

Yang H, Qin CS, Chen YM, Zhang GY, Dong LH, & Wan SQ. 2019. Persistence of Metarhizium (Hypocreales: Clavicipitaceae) and Beauveria bassiana (Hypocreales: Clavicipitaceae) in tobacco soils and potential as biocontrol agents of Spodoptera litura (Lepidoptera: Noctuidae). Environ. Entomol. 48(1): 147–155.