DETEKSI BAKTERI PATOGEN TERBAWA BENIH AKOR (ACACIA AURICULIFORMIS A. CUNN. EX BENTH.)

Authors

  • Tati Suharti Program Studi Fitopatologi Program Pascasarjana Universitas Gadjah Mada
  • Tri Joko Departemen Hama dan Penyakit Tumbuhan, Fakultas Pertanian, Universitas Gadjah Mada
  • Triwidodo Arwiyanto Departemen Hama dan Penyakit Tumbuhan, Fakultas Pertanian, Universitas Gadjah Mada

DOI:

https://doi.org/10.23960/j.hptt.11719-36

Keywords:

Acacia auriculiformis, bacteria, pathogen, seed

Abstract

Detection of seed-borne pathogenic bacteria of northern black wattle (Acacia auriculiformis A. Cunn. ex  enth.). Intensive research of seed-borne pathogen of A. mangium and A. crassicarpa which have been established in industrial timber estate (HTI) was undertaken in Indonesia, while plantings development of northern black wattle have recently been established in the 1990s. Very limited information available on northern black wattle diseases especially seed-borne diseases. The objectives of this study were to identify seed-borne pathogenic bacteria of northern black wattle and the effects on seed germination. Methods for the isolation of bacteria were by seed soaking, seed griding, blotter test, growing-on test on paper and soil. Identification of bacteria by PCR used 63F/1387R primer. The results showed that seed-borne bacteria of northern black wattle were Paenochrobactrum sp., Ralstonia sp., Burkholderia cepacia complex, Pseudomonas stutzeri, Acinetobacter sp., Alcaligenes faecalis, Salmonella bongori, Escherichia hermannii while pathogenic bacteria cause seedling leafspot were Micrococcus luteus and Burkholderia cepacia complex. Burkholderia cepacia complex, A. faecalis, Acinetobater sp., P. stutzeri, S. bongori and Ralstonia sp. reduced seed germination and increased rotten seed, suggested that they were the pathogenic bacteria of northern black wattle seed. Ralstonia sp. significantly increased the percentage of rotten seed and decreased shoot length and root length. P. stutzeri and S. bongori significantly inhibited the root growth. Paenochrobactrum sp. and E. hermannii were assumed as pathogen with weak virulence due to seed germination, the percentage of rotten seed and vigour index were relatively similar to untreated seed.

References

Arwiyanto T. 2015. Ralstonia solanacearum: Biologi, Penyakit yang Ditimbulkan dan Pengelolaannya. Gadjah Mada University Press.

Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, & Smith JA. 2003. Current Protocols in Molecular Biology. John Willyey & Sons Inc.

Avise JC. 1994. Molecular Markers, Natural History and Evolution. NewYork: Chapman & Hall.

Azmat R. 2014. The impact of siderophore secretion by Pseudomonas stutzeri to chelating Cu metal in solution culture. Pak. J. Bot. 46(1) : 383-387.

Baca BE & Elmerich C. 2007. Microbial production of plant hormones. In: Elmerich C & Newton WE (eds.). Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associations. pp. 113–143. Springer, The Netherlands.

Balestra GM, Agostini R, Bellincontro A, Mencarelli F, & Varvaro L. 2005. Bacterial populations related to gerbera (Gerbera jamesonii L.) stem break. Phytopathol. Mediterr. 44: 291–299.

Barak JD, Gorski L, Naraghi-Arani P, & Charkowski AO. 2005. Salmonella enterica virulence genes are required for bacterial attachment to plant tissue. Appl. Environ. Microbiol. 71(10): 5685-5691.

Barampuram S, Allen G, & Krasnyansi KS. 2014. Effect of various sterilization procedures on the in vitro germination of cotton seeds. Research Note. Plant Cell Tiss. Org. 118(1): 179–185.

Berlian I. 2012. Analisis Patogenesitas dan Karakterisasi Keragaman Genetik Banana Blood Diseases Bacterium (BBDB). [Tesis]. Universitas Gadjah Mada, Yogyakarta.

Beuchat LR, Ward TE, & Pettigrew CA. 2001. Comparison of chlorine and a prototype produce wash product for effectiveness in killing Salmonella and Escherichia coli O157:H7 on alfalfa seeds. J. Food Prot. 64(2): 152-158.

Bolkan HA, Waters CM, & Fatmi M. 1997. Clavibacter michiganenesis sub sp. michiganensis. Working Sheet 67 In: ISTA Handbook on Seed Health Testing. Zurich, Switzerland: International Seed Testing Association.

Coenye T, Falsen E, Vancanneyt M, Hoste B, Govan JRW, Kersters K, & Vandamme P. 1999. Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int. J. of Syst. Bacteriol. 49: 405-413.

Coenye T, Vandamme P, Govan JRW, & LiPuma JJ. 2001. Taxonomy and identification of the Burkholderia cepacia complex. J. Clin. Microbiol. 39(10): 3427 – 3436.

Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, & Barka EA. 2005. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 71(4): 1685-1693.

Cooley MB, Miller WG, & Mandrell RE. 2003. Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 and competition by Enterobacter asburiae. Appl. Environ. Microbiol. 69(8): 4915-4926.

Dawoud MEA & Eweis M. 2006. Phytochemical control of edible mushrooms pathogenic bacteria. J. Food, Agric. Environ. 4(1): 321-324.

Duca D, Lorv J, Patten CL, Rose D, & Glick BR. 2014. Indole-3-acetic acid in plant–microbe interactions. Antonie van Leeuwenhoek 106(1): 85–125.

Fanani AK, Abadi AL, &Aini LQ. 2015. Eksplorasi bakteri patogen pada beberapa spesies tanaman kantong semar (Nepenthes sp.). Jurnal HPT 3(3) : 104–110.

Castro-Gonzalez R, Martinez-Aguilar L & Ramirez-Trujillo A, Estrada-de los Santos P, & Caballero-Mellado J. 2011. High diversity of culturable Burkholderia species associated with sugarcane. Plant Soil 345(1): 155–169.

Gosling P. 2007. Raising Trees and Shrubs from Seed. Practice Guide. Forestry Commision. Edinburgh.

Hadianto W, Hakim L, & Bakhtiar. 2015. Ketahanan beberapa genotipe padi terhadap penyakit hawar daun bakteri (Xanthomonas oryzae pv. oryzae). Jurnal Hama dan Penyakit Tumbuhan Tropika 15(2): 152–163.

Haishui Z & Zengjiang Y. 1993. Acacias for rural, industrial, and environmental development in Southern China. In: Awang K & Taylor DA (eds.). Acacias for Rural, Industrial, and Environmental Development. pp. 15-20 .The Second Meeting of the Consultative Group for Research and Development of Acacias (COGREDA), Thailand, February, 15 -18, 1993.

Hendrati RL, Nurrohmah SH, Susilawati S, & Budi S. 2014. Budidaya Acacia auriculiformis untuk Kayu Energi. IPB Press.

Iakovleva LM, Makhinia LV, Shcherbina TN, & Ogorodnik LE. 2013. Micrococcus sp. the pathogen of leaf necrosis of horse-chestnuts (Aesculus L.) in Kiev. Mikrobiol. Z. 75(3): 62–67.

Ibrahim M, Tang Q, Shi Y, Almoneafy A, Fang Y, Xu L, Li W, Li B, & Xie GL. 2012. Diversity of potential pathogenicity and biofilm formation among Burkholderia cepacia complex water, clinical and agricultural isolates in China. World J. Microb. Biot. 28(5): 2113–2123.

Islam SS, Islam MS, Hossain Md. AT, & Alan Z. 2013. Optimal rotation interval of akashmoni (Acacia auriculiformis) plantations in Bangladesh. Kasetsart J. Soc. Sci. 34: 181 – 190.

Joker. 2001. Acacia auriculiformis Cunn. ex Benth. Informasi Singkat Benih. Direktorat Perbenihan Tanaman Hutan.

Joko T, Kusumandari N, & Hartono S. 2011. Optimasi metode PCR untuk deteksi Pectobacterium carotovorum, penyebab penyakit busuk lunak anggrek. Jurnal Perlindungan Tanaman Indonesia 17(2): 54–59.

Joko T, Subandi A, Kusumandari N, Wibowo A, & Priyatmojo A. 2014. Activities of plant cell wall- degrading enzymes by bacterial soft rot of orchid. Arch. Phytopathol. Plant Prot. 47(10): 1239 – 1250.

Kaur N, Sharma S, Sood A, & Kumar V. 2009. Incidence and interaction of seed borne micro flora of Cassia fistula in the Himalayan Region. Cameroon J. Exp. Biol. 5(1) : 21 -24.

Khan IA, Khan A, Asif H, Jiskani MM, Muhlbach HP, & Azim MK. 2014. Isolation and 16s rDNA sequence analysis of bacteria from dieback affected mango orchards in Southern Pakistan. Pakistan J. Bot. 46(4): 1431-1435.

Kirzinger MWB, Nadarasah G, & Stavrinides J. 2011. Insights into cross-kingdom plant pathogenic bacteria. Genes 2(4): 980 – 997.

Kremer RJ. 1987. Identity and properties of bacteria inhabiting seeds of selected broadleaf weed species. Microb. Ecol. 14(1): 29 – 37.

Kremer RJ, Begonia MFT, Stanley L, & Lanham ET. 1990. Characterization of rhizobacteria associated with weed seedlings. Appl. Environ. Microbiol. 56(6): 1649 -1655.

Levy A. 2007. Modelling Rhizosphere Interactions of Burkholderia Species. [Thesis]. Microbiology and Immunology School of Biomedical and Chemical Sciences. The University of Western Australia.

Liu Z, Zuo S, Zou Y, Wang J, & Song W. 2013. Investigation on diversity and population succession dynamics of endophytic bacteria from seeds of maize (Zea mays L., Nongda108) at different growth stages. Ann. Microbiol. 63(1):71–79.

Mahenthiralingam E., Bischof J, Byrne SK, Radomski C, Davies JE, Av-Gay Y, & Vandamme P. 2000. DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia Genomovars I and III. J. Clin. Microbiol. 38(9): 3165-3173.

Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Dymock D, & Wade WG. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microb. 64(2): 795 – 799.

Mihalache G, Zamfirache MM, & Stefan M. 2015. Root associated bacteria – friends or enemies?. Memoirs of the Scientific Sections of the Romanian Academy Tome XXXVIII: 28-54.

Ofek M, Hadar Y, & Minz D. 2011. Colonization of cucumber seeds by bacteria during germination. Environ. Microbiol. 13(10): 2794–2807.

Patro TSSK, Rao GVN, & Gopalakrishnan J. 2006. Association of Acinetobacter baumannii with a top rot phase of sugarcane redstripe disease in India. Indian Phytopathology 59(4): 501-502.

Raheem A & Ali B. 2015. Halotolerant rhizobacteria: beneficial plant metabolites and growth enhancement of Triticum aestivum L. in salt-amended soils. Arch. Agronom. Soil Sci. 61(12): 1691 -1705.

Rakhashiya PM, Patel PP, & Thaker VS. 2015. Whole genome sequences and annotation of Micrococcus luteus SUBG006, a novel phytopathogen of mango. Genomics Data 6: 10–15.

Rakhashiya PM, Patel PP, Sheth BP, Tank JG, & Thaker VS. 2016. Detection of virulence and pathogenicity genes in selected phytopathovars. Arch. of Phytopathology Plant Protect. 49(1 - 4): 64–73.

Rivas R, Fraile PG, Mateos PF, Martinez EM, & Velazquez E. 2007. Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifeca. Lett. Appl. Microbiol. 44(2): 181–187.

Rudrappa T, Biedrzycki ML, & Bais HP. 2008. Causes and consequences of plant-associated biofilms. FEMS Microbiol. Ecol. 64(2): 153 – 166.

Sands DC. 1990. Physiological criteria: determinative tests. In: Klement Z, Rudolph K, & Sands DC (eds.). Methods in Phytobacteriology. pp. 133– 143. Akademiai Kiado, Budapest.

Schaad NW, Jones JB, & Chun W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. Third Edition. APS Press.

Silitonga YW, Jamilah I, & Suryanto D. 2012. Pengendalian sel biofilm bakteri patogen oportunistik dengan panas dan klorin. Saintia Biologi 1(1): 46 – 51.

Suita E. 2013. Pengaruh sortasi benih terhadap viabilitas dan pertumbuhan bibit akor (Acacia auriculiformis). Jurnal Perbenihan Tanaman Hutan 1(2): 83-91.

Tamura K, Stecher G, Peterson D, Filipski A, & Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30(12): 2725–2729.

Tiedemann G, Bauch J, & Bock E. 1977. Occurrence and significance of bacteria in living trees of Populus nigra L. Forest Pathology 7(6): 364-374.

Turnbull JW, Midgley SJ, & Cossalter C. 1998. Tropical acacias planted in Asia : an overview. In: Tumbull JW, Crompton HR, & Pinyopusarerk K (eds.). Recent Developments in Acacia Planting. pp. 14 – 28. Australian Centre for International Agricultural Research, Hanoi, Vietnam, October, 27 – 30, 1997.

Ukoima HN, Wemedo SA, & Ekpirikpo AO. 2009. Survey of bacterial pathogens on leaves and seeds of red mangrove (Rhizophora mangle). African J. Environ. Sci. Technol. 3(5): 116-119.

Umesha S. 2006. Occurrence of bacterial canker in tomato fields of Karnataka and effect of biological seed treatment on disease incidence. Crop Prot. 25(4): 375–381.

Vanlaere E, Baldwin A, Gevers D, Henry D, De Brandt E, LiPuma JJ, Mahenthiralingam E, Speert DP, Dowson C, & Vandamme P. 2009. Taxon K, a complex within the Burkhlolderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int. J. Systematic and Evolutionary. Microbiol. 59: 102–111.

Wang ET, Tan ZY, Guo XW, Duran RR, Boll G, & Romero EM. 2006. Diverse endophytic bacteria isolated from a leguminous tree Conzattia multiflora grown in Mexico. Arch. Microbiol. 186(4): 251–259.

Xie L, Ju Y, & Zhao B. 2004. Dynamics of populations of nematode and bacteria in the process of pine wilt disease. Scientia Silvae Sinicae 40(4): 124-129.

You L, Wei Q, Gua H, & Zhang Y. 2013. Phylogenetic diversity of cultivable endophytic bacteria isolated from Litsea cubeba. J. Northwest A & F University - Natural Science Edition 4(4): 210 – 216.

Yun SC & Kim YH. 2003. Pathogenic bacteria causing rot in commercial soybean sprout cultivation. Korean J. Crop Sci. 48(2): 113-119.

Zhao BG, Lin F, Guo D, Li R, Li S, Kulinich O, & Ryss A. 2009. Pathogenic roles of the bacteria carried by Bursaphelenchus mucronatus. J. Nematol. 41(1): 11–16.

Downloads

Published

2017-01-11
Read Counter : 1772 times
PDF Download : 1149 times