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ABSTRACT

This study investigated the efficacy of organic amendments, specifically vermicompost (V) and fermented cow manure (C), at
application rates of 625 and 1250 kg/dunam, in managing corn stalk rot disease caused by Fusarium incarnatum. Maize (Zea
mays L.) is a globally vital crop, making the study of its diseases, such as stalk rot, essential for ensuring food security. Field
experiments were conducted on five hybrid corn varieties (DKc6664, DKc6777, GS235982, GS235772 and 2341.Rayal)
during the spring season of 2024 in Baghdad, Iraq. The results demonstrated that higher application rates (V. 1250 and C.
1250) significantly reduced disease severity and improved plant growth parameters, including plant height, vegetative mass,
and yield components. Vermicompost at 1250 kg/dunam (V. 1250) was particularly effective in reducing disease severity
in DKc6664 (16.67%) and DKc6777 (16.67%), while fermented cow manure at 1250 kg/dunam (C. 1250) enhanced root
development and seed weight in DKc6777. In contrast, F. incarnatum inoculation consistently increased disease severity
across all varieties, with the highest severity observed in GS235982 (91.61%). These findings highlight the potential of
organic amendments, especially at higher application rates, to improve corn productivity and manage stalk rot disease, even

under pathogen pressure.
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INTRODUCTION

Corn (Zea mays L.) is an essential crop for human
nutrition, animal feed, and industrial application. In
Iraq, maize cultivation covered approximately 88,812
ha in 2023, yielding 580,000 tons annually (FAO,
2024). During the growing season, several common
fungal infections inflict substantial harm worldwide
(Kenganal et al., 2017; Bawa, 2021; Pfordt & Paulus,
2025). Among these, corn stalk rots are particularly
prevalent, occurring with varying degrees of severity
each year. Plant pathogenic organisms, especially
fungi, are the primary causal agents (Asiedu et al.,
2024).

These diseases weaken the vascular tissues
in corn stalks, impairing efficient water and nutrient
transport (Song et al. 2024). Consequently, they cause
premature plant death and reduced grain fill (Jian et
al., 2024). Signs and symptoms of stalk rot typically
do not appear until late in the season. Stalk rot is a
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severe disease in corn, characterized by brown streaks
in the lower internodes, slowed growth, and rotting
of leaf sheaths and internal stalk tissues (Han et al.,
2023; Harish et al. 2023). The internal pith tissues of
mature stalks become discolored, ranging from pink to
salmon-pink (Shaner & Scott, 1998; Oldenburg et al.,
2017).

Fusarium stalk rot is one of the most common
forms of the disease, primarily caused by Fusarium
spp. This fungus infects leaf nodes, roots, and stalks,
and it is also responsible for Fusarium ear rot. Several
Fusarium species are capable of causing stalk rot (Shin
et al. 2014). The disease most frequently occurs during
hot, dry years. The fungus is widespread and may even
be present in otherwise healthy stalks, but infection
progresses to rot only under favorable conditions.
Proper soil drainage, adequate nutrient levels, and
recommended planting densities help reduce plant
stress (Song et al. 2024). These practices, combined
with hybrids possessing partial resistance, can lower
the incidence of corn stalk rot and support stronger
stalk development. However, most genetic resistance
in modern hybrids is specific to particular stalk rot
pathogens (Asiedu et al. 2024).

Fermented cow manure, widely used in organic
farming, contains beneficial microorganisms that act
as biocontrol agents against plant pathogens such as
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Rhizoctonia bataticola, which causes root rot and wilt
in corn (Radha & Rao, 2014). Its application enhances
nutrient availability—particularly phosphorus—in the
rhizosphere, improves uptake by plants, and stimulates
the activity of beneficial microorganisms in seedlings
(Fan et al., 2023).

Vermicompost has also been shown to mitigate
drought stress, enhance plant growth, and improve
resistance to soil-borne pathogens compared with
untreated plants (Hodson et al., 2023). In addition, it
improves plant anatomical features, such as increasing
the thickness of the epidermis, cortex, and cambium
ring, thereby enhancing resistance to pathogenic
infections (Al-Enezi & Jamil, 2023; Al-Hlfie &
Hussein, 2024). Using soil organic amendments, such
as vermicompost, manure, and compost is a sustainable
strategy for suppressing soil-borne pathogens,
imporoving soil health, and enhancing crop yeilds
(Naghman et al., 2023).

Therefore, this study aimed to evaluate the
efficacy of organic amendments (vermicompost and
fermented cow manure) in protecting corn plants from
stem rot disease and to characterize the causative
fungus both morphologically and molecularly.

MATERIALS AND METHODS

Corn Plant Materials and Isolation of Fusarium
Species. Corn roots exhibiting symptoms of stalk rot
were collected from corn fields in Baghdad Province,
Iraq, during 2023 and 2024. Samples were transported
to the laboratory in plastic bags, washed thoroughly
with tap water, and cut into 5-mm pieces. Roots
were surface-sterilized with 70% ethanol for 1 min,
followed by 1% sodium hypochlorite for 5 min, and
rinsed three times with sterile distilled water. The root
pieces were individually placed on potato dextrose
agar (PDA; prepared by dissolving 39 g of commercial
PDA powder in 1 L of distilled water, autoclaved at
121 °C for 15 min, and poured into sterile Petri dishes
under laminar flow), amended with streptomycin (50
ug/mL), and incubated at 25 °C for three days. The
spore-streak plate method was employed by spreading
spores on PDA plates, followed by incubation at 25 °C.
After 24 h, a single germinated spore was transferred
to a fresh plate using a sterile needle. Fusarium isolates
were stored at 4 °C for further use in this study.

Morphological and Cultural Characteristics of
Fusarium spp. ldentification of Fusarium species
was performed according to Leslie & Summerell
(2008) and included: (i) microscopic examination of
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macroconidia morphology (dimensions, curvature, and
septation patterns at 400% magnification), (ii) analysis
of microconidia production (conidiophore type), and
(ii1) cultural characterization on PDA (growth rate,
pigmentation, and colony morphology) after 7 days of
incubation at 25 °C under alternating light/dark cycles.

Pathogenicity Test of Fusarium spp. on Sorghum
Seeds. Pathogenicity tests were conducted on local
sorghum seeds. Water agar (WA) was sterilized and
and poured into Petri dishes. WA plates were inoculated
with Fusarium isolates and incubated at 25 °C for three
days. Sorghum seeds were surface-sterilized with 1%
sodium hypochlorite, rinsed with sterile water, and
air-dried. Ten seeds per plate were placed 1 cm from
the edge of the fungal colony, with three replicates per
isolate. Control dishes included plates containing only
the pathogen or only seeds. Plates were incubated until
seeds in the control dishes germinated. Germination
percentage was calculated using the following formula
(Gunasinghe et al., 2024):

G (%) =y X 100

G = Germination (%);
n = Number of sprouted seeds;
N = Total number of seeds.

Molecular Identification of Fusarium spp. The
ITS region was used for molecular identification.
Isolates were grown on PDA for five days to obtain
mycelia, which were scraped into 2-mL tubes for DNA
extraction following the methods of White et al. (1990)
and Kareem et al. (2020). DNA quantity and quality
were assessed using a NanoDrop spectrophotometer.
The ITS region was amplified using primers ITSI
(5’-TCCGTAGGTGAACCTGCGG-3’) and ITS4
(5’-TCCTCCGCTTATTGATATGC-3’) in a 50-uL
reaction mixture with Pfu DNA polymerase (Elpis,
Daejeon, Korea) (Taha et al., 2023; Kakakhan &
Shekhany, 2023). PCR products were purified and
sequenced by Macrogen Inc. (Daecjeon, Korea).
Sequences (~500 bp) were analyzed using BLAST
in the NCBI database. Reference sequences included
Fusarium incarnatum isolates from India (MT367538,
MW850464), Egypt, South Korea, Thailand,
Mexico, Basra (southern Iraq), and Sulaymaniyah
(northern Iraq) (MN480497, MF373444, KT587650,
OR707898, MK 174967, LC769967, 0Q408107). ITS
sequences were aligned using ClustalW in MEGA
7, and phylogenetic analysis was performed using
the neighbor-joining method with 1000 bootstrap
replicates.
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Field Experiment. The field experiment was conducted
at the Plant Protection Department Station B (33.31°N,
4436°E), College of Agricultural Engineering,
University of Baghdad, during the spring 2024 season.
The study evaluated the efficacy of vermicompost
and fermented cow manure, applied separately at two
rates (625 and 1250 kg/dunam), in protecting corn
against stalk rot and assessed the susceptibility of five
hybrid cultivars: 2341.Rayal — Syngenta, DKc6664 —
Syngenta, DKc6777 — Syngenta, GS235982 — Gentex
Seeds, and GS235772 — Gentex Seeds.

A randomized complete block design (RCBD)
with three replications was implemented in clay loam
soil (pH 7.2). The field was plowed, leveled, and
divided into three main blocks, each subdivided into
six plots (2.5 m x 10 m) with 1-m buffer zones. Corn
seeds were sown in rows spaced 25 cm apart (inter-
row) and 20 ¢cm within rows (intra-row). For pathogen
inoculation, conidia from 7-day-old PDA cultures were
suspended in sterile distilled water at 1 x 10° conidia/
mL. Seeds were surface-sterilized and immersed in
the conidial suspension for 30 min with intermittent
agitation every 5 min. A non-inoculated control was
maintained with sterile distilled water.

Standard agronomic practices were followed.
Data were collected on germination percentage (30
days), plant height (end of season), SPAD chlorophyll
(V6 stage), disease incidence/severity (0—4 scale),
and yield components (kernels per ear). Statistical
analysis was conducted using SAS 9.4 with two-way
ANOVA and Tukey’s HSD test (P < 0.05), with arcsine
transformation applied to percentage data.

RESULTS AND DISCUSSION

Isolation of Fusarium Species. Seventeen Fusarium
isolates were obtained from corn plants exhibiting
symptoms of stalk rot in Baghdad Province during the
2023-2024 agricultural season. These plants showed
symptoms including stalk and root rot, wilting,

Root rot.
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stunting, and leaf necrosis (Figure 1). The isolation
of seventeen Fusarium strains aligns with findings
by Kakakhan & Shekhany (2023), who documented
Fusarium diversity in Iraqi corn fields. The observed
symptomatology—wilting, stunting, and necrosis—
corresponds with pathogenic mechanisms described
by Al-Enezi & Jamil (2023).

Morphological and Cultural Characteristics of
Fusarium spp. The Fusarium isolates exhibited
mycelial growth with white to pink colonies and
distinctive yellow reverse pigmentation on PDA at
25 °C after six days. Two distinct conidial types were
observed: (1) unicellular, hyaline microconidia (9—11 x
3—4 pum) with 0—1 septa, and (2) hyaline macroconidia
(27-30 x 3-5 um) with 4-5 septa. Macroconidia
displayed characteristic curvature with tapering apical
cells and foot-shaped basal cells, consistent with F
incarnatum morphology (Figure 2). These features are
in agreement with descriptions by Ofi et al. (2023),
supporting the identification of these isolates as F
incarnatum.

Pathogenicity Test of Fusarium incarnatum on
Sorghum Seeds. Pathogenicity assays under in vitro
conditions demonstrated significant variation among
F. incarnatum isolates (Figure 3). Isolates FI 10c,
FI 10b, and FI 14a exhibited the lowest germination
rates at 20%, 25%, and 25%, respectively (Figure
4), significantly lower than other isolates. These
differences in pathogenicity likely reflect genetic
variability among isolates, influencing their ability to
infect sorghum seeds (Gunasinghe et al., 2024). Highly
aggressive isolates may produce more potent cell-wall
degrading enzymes or mycotoxins, as reported for
maize stalk rot (Harish et al., 2023; Oldenburg et al.,
2017).

Molecular Identification Phylogenetic Analysis
of Fusarium spp. DNA extracted from the isolates
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Figure 2. Morphological characteristics of Fusarium incarnatum. A. Macroconidia; B. Polyphialides; C.
Microconidia. Scale bar = 10 um.

The pathogenicity test of Fusarium incarnatum isolates
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Figure 3. Pathogenicity test of Fusarium incarnatum isolates on sorghum seeds on WA medium.
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Figure 4. Pathogenicity test of Fusarium incarnatum isolates on sorghum seeds on WA medium. 1-17. Fusarium
incarnatum isolates. C. Sorghum seed control.

was used to amplify the ITS region. BLAST analysis  method; Figure 5) showed genetic affinity among the
identified all isolates as F. incarnatum, suggesting  Baghdad isolates (FI 10c, FI 10b, FI 14a) and reference
it is primarily responsible for stalk rot in Baghdad F. incarnatum sequences from GenBank, indicating
corn fields. Phylogenetic analysis (Neighbor-Joining a common ancestral origin. Significant divergence
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g0 PP346120 Fusarium incarnatum FI.
78|PP346121 Fusarium incarnatum F1. 14a

56 MT367538 Fusarium incarnatum India

44 PP346119 Fusarium incarnatum FI. 10c
43 MN480497 Fusarium incarnatum Egypt

KT587650 Fusarium incarnatum South Korea
IMF373444 Fusarium incarnatum Egypt
OR707898 Fusarium incarnatum Thailand
MW850464.1 Fusarium incarnatum India
MK174967.1 Fusarium incarnatum Mexico

—_
0.10

LC769967.1 Fusarium incarnatum Basra Iraq

0Q408107.1 Fusarium incarnatum Sulaimani Iraq
KF372657.1 Rhizoctonia solani isolate Q30

Figure 5. Phylogenetic tree constructed using the Neighbor-Joining method, illustrating the genetic relationships
of Fusarium incarnatum compared with reference sequences available in the NCBI/GenBank database.
Evolutionary analyses were performed in MEGA7 with a bootstrap test of 1000 replicates. Rhizoctonia
solani isolate (KF372657.1) was used as the outgroup for the phylogenetic tree.

was observed between Baghdad isolates (PP346119,
PP346120, PP346121) and isolates from Sulaymaniyah
(0Q408107) and Basrah (LC769967), likely reflecting
geographical and environmental influences on fungal
differentiation (Ofi et al., 2023; Kakakhan & Shekhany,
2023).

Field Experiment.

GS235772 Hybrid Corn: Application of vermicompost
and fermented cow manure at 625 and 1250 kg/
dunam significantly affected stalk rot severity (Table
1). Treatments V.1250 and C.1250 reduced severity
to 25% (disease degree index 1.0), compared with F.
incarnatum (90.87%; degree index 3.7). C.1250 was
the most effective treatment, reducing disease while
improving plant height, vegetative mass, and 500-seed
weight. V.1250 also enhanced disease suppression and
root development.

DKc6664 Hybrid Corn: V.1250 achieved the lowest
stalk rot severity index (16.67%), while F. incarnatum
recorded the highest severity (58.34%) (Table 2).
Vermicompost at 1250 kg/dunam also improved dry
vegetative mass and seed count per row, whereas
C.1250 enhanced cob development, reflected in the
highest number of rows per cob and 500-seed weight.
These effects are attributed to microbial consortia
in the amendments, which provide biocontrol via
rhizosphere colonization and siderophore-mediated
iron sequestration. Results are consistent with Fan
et al. (2023), but differ from Asiedu et al. (2024),

highlighting functional specialization: vermicompost
suppressed pathogens, while cow manure improved
yield (Kakakhan & Shekhany, 2023).

DKc6777 Hybrid Corn: V.1250 was the most effective
inreducing stalk rot and enhancing dry vegetative mass.
C.1250 significantly improved root development and
seed weight, producing the highest fresh root weight
(123.1 g) and 500-seed weight (124.8 g) (Table 3).
Conversely, F. incarnatum consistently underperformed
in growth and yield traits. Biocontrol efficacy is linked
to antibiotic-producing y-Proteobacteria and Firmicutes
within the amendments, which suppress pathogens
through antimicrobial production and induction of
systemic resistance (Al-Hlfie & Hussein, 2024).

GS235982 Hybrid Corn: V.625 reduced stalk rot and
improved plant height, stalk width, and dry vegetative
mass. V.1250 enhanced cob development, achieving
the highest number of rows per cob (20) and seeds per
row (30). In contrast, F. incarnatum caused the highest
severity (91.61%) and reduced plant growth (Table
4). The biocontrol mechanisms of these amendments
include systemic resistance induction, competitive
exclusion, and antibiosis, mediated by diverse
microbial communities (Hodson et al., 2023; Fan et
al., 2023).

2341.Rayal Hybrid Corn: V.1250 enhanced vegetative
growth, while C.625 improved seed quality (highest
500-seed weight) (Table 5). However, disease
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suppression was limited, emphasizing growth-
promoting effects rather than pathogen control.

Across varieties. Vermicompost at 1250 kg/dunam
(V.1250) consistently enhanced vegetative growth
(plant height, stalk width, biomass), while fermented
cow manure at 625 kg/dunam (C.625) improved seed
quality (Figure 6). In this trial, however, none of the
treatments significantly reduced stalk rot incidence.
These results suggest that organic amendments,
particularly vermicompost, can improve corn growth
and yield under disease pressure, even when disease
control is limited. This aligns with Hodson et al. (2023)
and Fan et al. (2023), though it contrasts with Asiedu
et al. (2024).

Varietal Responses. Disease severity varied by
genotype. GS23772 showed reduced severity with
V.1250(25%)and C.1250(25%), whereas F. incarnatum
increased severity to 90.87%. DKc6664 and DKc6777
showed the lowest severity with V.1250 (16.67%),
while GS235982 remained highly susceptible (severity
up to 91.61%). The 2341.Rayal variety displayed
uniform severity (50%) across treatments, suggesting
limited amendment effects. Overall, vermicompost
at 1250 kg/dunam was the most effective in reducing
severity (16.67-25%) across responsive varieties,
supporting Asiedu et al. (2024) and confirming Fan
et al. (2023) regarding the importance of high-rate
vermicompost. These findings underscore the need for
customized amendment strategies based on hybrid-
specific responses.

Impact of organic amendments (vermicompost and fermented cow manure)
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CONCLUSION

This study evaluated the efficacy of organic
soil amendments in suppressing corn stalk rot disease
(Fusarium incarnatum) and their effects on maize (Zea
mays L.) growth and yield. Quantitative assessments
showed that vermicompost and fermented cow manure
significantly (p < 0.05) reduced disease severity (by
17-79%) and enhanced agronomic performance,
particularly at the 1250 kg/dunam application
rate. Vermicompost demonstrated superior disease
suppression in hybrids DKc6664, GS235772, and
DKc6777, lowering severity indices to 16.67-25%
compared with controls. At the same rate (V.1250),
vermicompost also significantly improved vegetative
traits, including plant height, stalk width, and fresh
vegetative mass. In contrast, fermented cow manure at
625 kg/dunam (C.625) primarily enhanced seed quality,
producing the highest 500-seed weight. Inoculation
with F incarnatum alone consistently increased
disease severity (58—90%) across all cultivars. Overall,
these findings highlight the potential of high-rate
organic amendments, particularly vermicompost, as a
sustainable strategy for managing Fusarium stalk rot
and improving yield in maize production systems.
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Table 5. Evaluation of the efficiency of vermicompost and fermented cow manure at rates of 625 and 1250 kg/dunam in protecting corn crops from stalk rot
disease, and assessment of the sensitivity of 2341.Rayal hybrid corn variety to the disease

Corn cob

Fresh Row No.

weight

Root mass

Fresh
weight

Vegetative mass

Disease incidence

Severity
index

Weight
500 S

Seeds
No. in

Dry
weight

Stalk
width

(mm)

High
% Germination Chlorophyl (cm)

Degree
index

Treatments

No

(2
77.2

Row

343

(g)
110.9
83.2

(2)

(2)
60.0

133 16.3

21.0

255
299
233
238
235
231

59
53
57
51

80.94

2
2
2
2
2

2
0.53

50.00
50.00
50.00
50.00
50.00
50.00

4.16
* Each number in the table represents three replicates and Each replicate includes 7 plants. V-

V. 625
V. 1250
C. 625
C. 1250
F incarnatum

1
2
3
4
5
6

30.7 77.2

16.0

68.4 12.5

23.7

100
95.23

. Trop. Plant Pests Dis.

58.2 11.2 93.2 16.3 29.3 95.0

20.3

77.0 17.1 83.8 16.0 25.0 76.7

18.0

80.94
90.46

95.23

17.4 51.0 13.5 80.2 16.0 34.0 63.0

55
57

0.15

52.2 13.4 81.0 15.3 20.7 93.0

23.2

Control
LSD P<0.05

9.67 1.79 13.84 1.22 1.39 1.88
Vermocompost, C= Fermented cow manure.

2.90

6.68

14.90
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