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ABSTRACT

Cassava mosaic disease (CMD) remains a major constraint to cassava (Manihot esculenta Crantz) production in Cameroon. 
This study aimed to generate updated epidemiological data on CMD across the country. Surveys were conducted in 342 fields 
across the ten administrative regions of Cameroon between January and September 2022, following a standardized protocol 
adopted by all fourteen countries participating in the Central and West African Virus Epidemiology for Food Security (WAVE) 
program. In each field, 30 plants were assessed for CMD incidence, severity, whitefly population, and mode of infection. CMD 
symptoms were observed in all ten regions. The overall mean CMD incidence was 54.72%, with a mean severity score of 
2.39. Incidence, severity, and whitefly populations varied significantly among regions. The South Region recorded the highest 
mean incidence (74.34%), while the Far North had the lowest (18.97%). The Adamawa Region exhibited the highest mean 
severity (2.63), whereas the South West Region had the lowest (2.19). Whitefly abundance per plant was greatest in the South 
West (21.44) and lowest in the Far North (0.40). PCR amplification and sequencing confirmed the presence of cassava mosaic 
geminiviruses (CMGs) in leaf samples. A positive correlation was detected between mean whitefly abundance and CMD 
incidence, while altitude was negatively correlated with whitefly numbers. Both CMD incidence and whitefly populations 
were higher in intercropped fields than in monocropped fields. Notably, intercropping cassava with maize reduced whitefly 
populations, while intercropping with sweet potato lowered CMD incidence. The primary source of CMD infection was the 
use of infected cuttings. These findings provide valuable insights for the development of targeted interventions and improved 
management strategies for CMD in Cameroon. 
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INTRODUCTION 

Cassava (Manihot esculenta Crantz) is essential 
for food security and income generation, as both its 
roots and leaves are widely consumed. Globally, it is 
the fourth most important staple food after rice, wheat, 
and maize, contributing 2.6% of total caloric intake 
(Hareesh et al., 2023). Beyond its role as food, cassava 
is also used in animal feed and in various industries 
such as starch, ethanol, and biofuel production (FAO, 
2017). In Cameroon, cassava is particularly important 
due to its large arable land area (6.16 million ha) and 

a rural population representing 51% of the country’s 
25.9 million inhabitants (INS, 2019). The nation is 
the leading food producer in Central Africa (Evouna 
& Ngounou, 2024), with cassava contributing 60% 
of roots and tubers consumed—40% as processed 
products and 20% as fresh roots—making it the second 
most consumed crop after bananas (Kegah et al., 2019). 
In 2022, cassava production in Cameroon reached 
6.3 million tons from 465,097 ha, averaging 13.48 t/
ha, which accounts for 1.9% of global production 
(FAOSTAT, 2025). However, this yield remains below 
that of Asian countries, where yields can reach up to 
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21.5 ton/ha (Kongsil et al., 2024). Factors contributing 
to this yield gap include limited availability of quality 
planting materials, poor adoption of good agricultural 
practices, inadequate disease management, and insect 
pest damage (Legg et al., 2014). 

Among the most constraints to cassava 
production in sub-Saharan Africa are viral diseases, 
particularly cassava mosaic disease (CMD) and 
Cassava brown streak disease (CBSD). CMD can 
cause yield losses of 40–70%, while CBSD may 
result in up to 100% losses (Changadeya et al., 2016). 
In Cameroon, CMD is widespread and significantly 
impacts production (Fondong et al., 2000; Akinbade 
et al., 2010; Tize et al., 2021), whereas CBSD has 
not been scientifically reported. CMD is caused by 
Cassava mosaic geminiviruses (CMGs) (Family: 
Geminiviridae, Genus: Begomovirus), which have 
circular single-stranded DNA genomes. The bipartite 
genome consists of DNA-A and DNA-B components, 
encapsidated in twinned icosahedral particles (~2.7 
kb each) (Hareesh et al., 2023). DNA-A encodes 
replication, encapsidation, and anti-host defense 
functions, while DNA-B encodes movement proteins, 
including the nuclear shuttle protein and the movement 
protein (Dye et al., 2023). The International Committee 
for Taxonomy of Viruses (ICTV) recognizes 11 CMG 
species, nine of African origin and two from Asia 
(Soro et al., 2021; Chikoti & Tembo, 2022; Hareesh 
et al., 2023). In Cameroon, African cassava mosaic 
virus (ACMV), East African cassava mosaic virus 
(EACMV), and East African cassava mosaic Cameroon 
virus (EACMCV) are particularly important (Fondong 
et al., 2000; Akinbade et al., 2010). 

Transmission of CMGs is mediated by the 
whitefly Bemisia tabaci (Hemiptera: Aleyrodidae), 
a cryptic species complex of more than 35 
morphologically indistinguishable species (Chikoti et 
al., 2020; Namuddu et al., 2023). Cassava-colonizing B. 
tabaci belongs to the sub-Saharan Africa (SSA) group, 
identified through mitochondrial COI sequencing. This 
group comprises five subgroups (SSA1–5), with SSA1 
further divided into subgroups SG1–SG5 (SSA1-SG1 
to SG5) (Chikoti et al., 2020; Macfadyen et al., 2021; 
Caspary et al., 2023). Whiteflies damage plants directly 
through phloem feeding by nymphs and adults, and 
indirectly by producing honeydew, which supports 
sooty mold growth on leaves (Ally et al., 2019). 
Environmental factors such as temperature, rainfall, 
and humidity strongly influence their population 
dynamics (Chikoti & Tembo, 2022). CMD is also 
spread through the use of infected cuttings for planting 
(Namuddu et al., 2023). 

CMD symptoms include chlorotic mosaic 
patterns on leaves, distortion, deformation, stunting, 
and in severe cases, leaflet shrinkage. These symptoms 
reduce photosynthetic surface area, impair plant 
growth, and ultimately lower yields (Legg et al., 2014; 
Chikoti et al., 2019; Eni et al., 2021). Symptom severity 
depends on factors such as virus species, synergistic 
effects of mixed infections, host susceptibility, 
plant age at infection, and environmental conditions 
including soil fertility and moisture (Chikoti et al., 
2019; Houngue et al., 2022; Claude et al., 2023). High 
CMD incidence is usually associated with infected 
cuttings and abundant whitefly populations, while 
severity often reflects high virus concentrations within 
plants (Houngue et al., 2019).

CMD management strategies include the 
production of virus-free planting materials via in 
vitro culture, selection of clean cuttings, roguing of 
diseased plants, and cultivation of resistant or tolerant 
varieties (Biola et al., 2022; Chikoti & Tembo, 2022). 
In Cameroon, cassava varieties can be categorized into 
local landraces, which are generally low-yielding and 
CMD-susceptible, and improved varieties, which are 
higher-yielding and more tolerant or resistant (Tchuente 
et al., 2024). Despite these options, CMD remains 
highly prevalent due to limited farmer awareness 
(Houngue et al., 2018), continued use of susceptible 
varieties, poor adoption of cultural practices (Chikoti 
et al., 2019; Houngue et al., 2019) high whitefly 
populations (Chikoti & Tembo, 2022; Namuddu et 
al., 2023), mixed infections (Eni et al., 2021), and the 
presence of virulent strains such as the recombinant 
East African cassava mosaic virus Ugandan strain 
(EACMV-Ug), reported in Cameroon’s East and 
Adamawa regions (Akinbade et al., 2010). More recent 
surveys (Doungous et al., 2022) confirm that CMD is 
widespread across all ten regions of Cameroon, with 
high incidence. 

Given the complexity of factors influencing 
CMD epidemiology, updated information is essential 
for effective disease management. In particular, 
little is known about how cropping systems affect 
CMD incidence, severity, and whitefly populations 
in Cameroon. Regular epidemiological surveys are 
therefore crucial to guide integrated control strategies 
and reduce CMD’s impact on cassava production. 

This study aims to provide updated 
epidemiological data on CMD in Cameroon, focusing 
on its incidence, severity, causal agents, and vector 
populations. In addition, it assesses the influence of 
cropping systems on CMD incidence and whitefly 
abundance.
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MATERIALS AND METHODS

Research Site. The survey was conducted across all 
ten administrative regions of Cameroon: Adamawa, 
Centre, East, Far North, Littoral, North, North 
West, South, South West, and West. These regions 
encompass the country’s five agro-ecological zones, 
each characterized by distinct geographical features 
and soils suitable for cassava cultivation. Climatic 
conditions and average altitudes of the study areas 
correspond to those described by Doungous et al. 
(2022).

Field Surveys. Field surveys were conducted between 
January and September 2022, following a harmonized 
protocol established for the fourteen target countries 
of the Central and West African Virus Epidemiology 
(WAVE) program (Sseruwagi et al., 2004; Eni et al., 
2021; Soro et al., 2021; Doungous et al., 2022). Data 
collection included epidemiological information, GPS 
coordinates, and samples from both symptomatic 
and asymptomatic cassava leaves of plants aged 3–6 
months. A total of 342 fields were surveyed across the 
10 regions (Figure 1). In each farm, a systematic visual 
inspection was carried out to assess CMD symptoms. 
Survey site spacing depended on cassava field 
availability: in low-density areas, maximum distances 
were determined by field presence, while minimum 

distances generally ranged from 10–20 km. 

Data Collection and Recording. Data were collected 
at each site using a tablet equipped with iForm Zerion 
version 9.12.7 survey software, developed for the 
WAVE program by the Epidemiological Modeling 
Group, University of Cambridge (UK). Recorded 
information included: locality, administrative district, 
GPS coordinates (longitude, latitude, altitude), 
observed CMD symptoms, and whitefly counts on 
the top five apical leaves. Additional metadata—
such as cassava variety, intercropping type, survey 
date and time, field size, cropping system (mono- or 
intercropping), number of cassava varieties per field, 
and distance between surveyed fields—was also 
collected. Data were uploaded to the iForm cloud 
database and integrated into the WAVE Cube, a 
multidimensional platform for WAVE program data 
storage.                    

Field Data Evaluation. In each field, 30 plants were 
evaluated along two X-shaped diagonals, with 15 
plants randomly selected on each diagonal. For each 
plant, CMD severity symptoms, whitefly population 
on apical leaves, and infection source (cuttings or 
vectors) were recorded. 

CMD Severity Symptom. CMD severity was scored on 

Figure 1. Map showing the locations of cassava fields surveyed in Cameroon.
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a 1–5 scale (Hahn et al., 1980; Sseruwagi et al., 2004): 

1 = No symptoms;
2 = Slight chlorotic pattern on ≤20% of the leaf blade, 
      no deformation;
3 = Strong mosaic pattern on across leaf, deformation 
      in lower third of leaflets, no size reduction; 
4 = Severe mosaic;   deformation   of   two-thirds   of 
      leaflets, reduced size, leaf distortion;  
5 = Very severe mosaic;  chlorosis,  deformation,  and  
       plant stunting. 

Representative CMD symptoms are shown in 
Figure 2. The mean CMD severity was calculated for 
each field, division, region, and for the whole country 
using the method described by Mouketou et al. (2022):

CS
I C

SP
2

5

= =/
/ 

CS= Mean CMD Severity;
P	  = Plant severity score;
I	   = Infected plants; 
S   = Sum of severity scores >1;  
C	  = Count of infected plants (severity >1). 

Mean CMD Incidence. CMD incidence (%) was 
calculated as the proportion of symptomatic plants 
relative to total plants assessed, following Mouketou 
et al. (2022). 

CI
TP

IP
100#=

CI	= Mean CMD incidence;
IP	= Infected plants;
TP= Total plants.

Incidence values were categorized as: 0% = 
Healthy; 0–25% = Low; 25–50% = Medium; 50–75% 
= High; 75–100% = Very high. 

Whitefly Population. Whiteflies were counted on the 
five apical leaves of each plant by gently turning leaves 
to examine the underside. Mean whitefly density 
per plant was obtained by dividing the total number 
of whiteflies recorded across 30 plants by 30. Mean 
densities were calculated for each field, division, 
region, and nationally.   

Source of Infection.  The source of infection was 
determined according to Sseruwagi et al. (2004), 
which states that vector-caused infections show 
symptoms only on the upper leaves, while cuttings 
cause symptoms on the lower leaves.

Detection of Cassava Mosaic Geminiviruses 
(CMGs). To identify CMD causal agents, molecular 
analyses were performed on 60 randomly selected 
symptomatic samples. Genomic DNA was extracted 
from cassava leaves using the CTAB method 
(Permingeat et al., 1998). DNA concentration was 
quantified with a NanoDrop™ Lite spectrophotometer 
(Thermo Scientific) and adjusted to 200 ng/µL. PCR 
amplification was carried out with specific primers 
(Table 1) in 25 µL reactions containing: 16.4 µL  

Figure 2. Types of cassava mosaic disease (CMD) symptoms observed in the field, based on a 1–5 severity scale: 
A = 1 (no symptoms); B = 2 (slight symptoms); C = 3 (moderate symptoms); D = 4 (severe symptoms); 
E = 5 (very severe symptoms).

 A  B  C 

 D  E 
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nuclease-free water (Solis BioDyne), 2.5 µL 10× 
FIREPol Reaction Buffer BD (Solis BioDyne), 2.5 µL  
25 mM MgCl₂ (Solis BioDyne), 0.5 µL 10 µM dNTPs, 
0.5 µL of each 0.5 µM primers (GenCust), 0.1 µL  
FIREPol DNA polymerase (5 U/µL; Solis BioDyne), 
and 2 µL DNA template. Thermal cycling conditions 
were: initial denaturation at 94 ºC for 4 min; 35 cycles 
of denaturation at 94 ºC for 1 min, annealing at 55 ºC 
for 1 min, and extension at 72 ºC for 1 min; with a final 
extension at 72 ºC for 10 min. 

PCR products were analyzed by electrophoresis 
on a 1% agarose gel stained with ethidium bromide. 
Electrophoresis was run at 100 V for 45 min in 1× 
TAE buffer using a Midigel 2 system (Apelex). Bands 
were visualized with a Vilber Lourmat E-Box CX5 
TS Edge system. Positive amplicons were sequenced 
bidirectionally by the Sanger method (Sanger et 
al., 1977) at Macrogen Europe BV (Amsterdam, 
Netherlands).

Data Analysis and Visualization. Epidemiological 
data were analyzed at plant, field, division, regional, 
and national scales. Results were presented as tables, 
graphs, and histograms. Statistical analyses were 
conducted using Python 3.12. Normality of continuous 
variables (CMD incidence, severity, whitefly density, 
infection source, cropping system) was tested with the 
Shapiro–Wilk test. Mean comparisons were performed 
with the Wilcoxon test (P < 0.05). Correlations among 
variables were assessed using Spearman’s rank 
correlation (P < 0.05).

Maps of survey sites, CMD incidence, and 
severity distributions were generated with QGIS 
3.28. Sequencing results were analyzed using the 
NCBI BLAST tool (Altschul et al., 1997) to identify 
homologous sequences in GenBank based on alignment 
scores and metrics. 

RESULTS AND DISCUSSION

CMD Symptoms in the Field. Out of the 342 fields 
surveyed, 317 (92.69%) were infected with CMD, 
while 25 (7.31%) were asymptomatic. Prevalence was 
highest in the Littoral, North West, and West Regions, 
where all fields (100%) were infected. In contrast, the 
Far North Region recorded a lower prevalence, with 
61.54% of fields showing infection (Table 2). Among 
the 25 healthy fields, 8 were located in Adamawa, 6 in 
the North, 5 in the Far North, 2 each in the East and 
South West, and 1 each in the Centre and South.

The widespread distribution of CMD across 
Cameroon is largely driven by the use and exchange of 

infected planting materials among farmers, a finding 
consistent with earlier reports from across Africa 
(McGuire & Sperling, 2016; Chikoti et al., 2019; 
Houngue et al., 2022; Mouketou et al., 2022). 

CMD Incidence, Severity, and Causal Agents. 
CMD was present in all ten regions with a national 
mean incidence of 54.72%. Significant variation was 
observed across fields (W = 0, df = 341, P < 0.0001), 
with incidences ranging from 18.97% to 74.34%. High 
incidences (>50–75%) were recorded in the South, 
Littoral, East, and Centre, while the Far North had the 
lowest (18.97%). CMD was absent in three divisions 
of the Far North (Mayo-Danay, Mayo-Kani, Mayo-
Tsanaga), whereas very high incidences (>75–100%) 
were observed in nine divisions, including Ndé, 
Bamboutos, Ndian, Meme, and Vallée-du-Ntem (Table 
3). At the field scale, 112 fields exhibited very high 
incidence, 85 had medium incidence, and 49 showed 
low incidence (Figures 3–4).

The mean CMD severity across all surveyed 
plants was 2.39, with significant differences among 
fields (W = 0, df = 341, P < 0.0001). Of the 10,233 plants 
assessed, 4,634 showed no symptoms (score 1), 3,583 
had slight symptoms (score 2), 1,865 showed moderate 
symptoms (score 3), 137 had severe symptoms (score 
4), and 14 had very severe symptoms (score 5) (Figure 
5). Regional mean severities ranged from 2.19 in the 
South West to 2.63 in Adamawa (Figure 6). At the 
divisional level, Mayo-Louti had the lowest severity 
(2.00), while Djerem recorded the highest (2.69) (Table 
3, Figure 7). 

Molecular diagnostics confirmed the presence 
of ACMV, EACMV, and EACMCV in both single 
and mixed infections. BLAST analyses revealed 
high nucleotide identity (95.58–98.76%) between 
Cameroonian isolates and GenBank reference 
sequences (Table 4). One isolate exhibited 97.52% 
identity with the DNA-A component of the EACMV-
Ug strain previously reported in Chad and the Central 
African Republic (HE814064). Past studies also 
documented co-infections involving ACMV, EACMV, 
and EACMCV in Cameroon (Akinbade et al., 2010). 
EACMV-Ug, in particular, is known as a highly 
virulent strain associated with severe CMD symptoms 
in Gabon and East Africa (Legg et al., 2004; Chikoti & 
Tembo, 2022).

The distribution of CMD in all ten regions 
is consistent with earlier surveys by Doungous et 
al. (2022), who reported a higher mean incidence 
(66.93%) and severity (2.28). Similarly, Alain et al. 
(2024), reported a mean incidence of 57.58% and a 
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Figure 4. Cassava mosaic disease (CMD) incidence levels in 342 cassava farms surveyed in Cameroon.
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Regions Divisions Surveyed 
fields

Mean CMD 
severity

Mean CMD 
incidence (%)

Mean No. 
Whitefly

Adamawa 45 2.63 36.67 1.99
Djerem 10 2.69 55.33 3.98
Faro-Et-Déo 8 2.68 10.48 1.58
Mayo-Banyo 5 2.66 51.33 4.08
Mbéré 9 2.61 46.30 1.70
Vina 13 2.54 26.92 0.22

Centre 75 2.41 56.51 6.77
Haute-Sanaga 12 2.37 66.67 15.08
Lekié 8 2.57 51.67 9.13
Mbam-et-Inoubou 7 2.61 65.24 4.56
Mbam-et-Kim 20 2.40 46.00 4.35
Méfou-et-Afamba 3 2.22 40.00 8.38
Méfou-et-Akono 2 2.35 43.33 2.45
Mfoundi 3 2.48 57.78 2.90
Nyong-et-Kéllé 11 2.29 62.12 6.14
Nyong-et-Mfoumou 3 2.48 76.83 3.13
Nyong-et-So'o 6 2.30 60.00 3.08

East 62 2.52 60.41 4.90
Boumba-et-Ngoko 10 2.46 51.85 4.41
Haut-Nyong 17 2.60 61.76 5.61
Kadey 15 2.53 68.22 8.32
Lom-et-Djérem 20 2.46 57.39 2.08

Far North 13 2.26 18.97 0.40
Diamaré 4 2.10 17.50 0.23
Logone-et-Chari 2 2.23 21.67 0.08
Mayo-Danay 2 1.00 0.00 0.50
Mayo-Kani 1 1.00 0.00 1.57
Mayo-Sava 3 2.35 44.44 0.52
Mayo-Tsanaga 1 1.00 0.00 0.00

Littoral 21 2.27 73.69 11.64
Moungo 7 2.13 78.13 9.34
Nkam 6 2.23 70.00 8.64
Sanaga-Maritime 6 2.42 78.89 13.06
Wouri 2 2.48 55.00 23.75

North 31 2.42 42.90 0.66
Bénoué 10 2.38 70.33 1.11
Faro 4 2.23 21.67 0.07
Mayo-Louti 1 2.00 36.67 0.03
Mayo-Rey 16 2.54 31.46 0.57

North West 2 2.35 71.67 14.35
Momo 2 2.35 71.67 14.35

Table 3. Mean CMD Incidence, mean severity and mean whitefly population in the Divisions within Cameroon
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Regions Divisions Surveyed 
fields

Mean CMD 
severity

Mean CMD 
incidence (%)

Mean No. 
Whitefly

South 53 2.25 74.34 5.75
Dja-et-Lobo 20 2.27 71.17 4.95
Mvila 11 2.27 92.42 8.66
Océan 13 2.18 55.64 6.04
Vallée-du-Ntem 9 2.24 86.30 3.54

South West 20 2.19 47.83 21.44
Fako 8 2.17 31.25 22.90
Kupe Manenguba 2 2.19 60.00 16.58
Manyu 5 2.19 34.67 14.30
Meme 4 2.20 81.67 27.62
Ndian 1 2.19 86.67 30.40

West 20 2.34 46.33 3.70
Bamboutos 1 2.18 93.33 2.30
Haut Nkam 2 2.13 51.67 16.80
Hauts Plateaux 2 2.36 46.67 0.73
Koung Khi 1 2.33 40.00 0.10
Menoua 3 2.38 57.78 0.63
Mifi 1 2.50 26.67 1.83

Table 3. Continued. Mean CMD Incidence, mean severity and mean whitefly population in the Divisions within 
Cameroon

mean severity of 2 across two agro-ecological zones 
in Cameroon. The observed decline in incidence 
after 2020 may reflect the impact of WAVE program 
interventions, including farmer sensitization, use of 
the PlantVillage Nuru application for real-time disease 
diagnosis, and the establishment of clean seed fields in 
major production areas. 

High to very high CMD incidences in the 

Centre, South, North West, and Littoral regions mirror 
trends reported in neighboring countries such as 
Gabon (64.29%), the Central African Republic (85%), 
and the Republic of Congo (86%) (Ntawuruhunga et 
al., 2007; Zinga et al., 2013; Mouketou et al., 2022). 
In these regions of Cameroon, access to improved 
varieties remains limited, and farmers commonly 
recycle susceptible local planting materials without 
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Figure 7. CMD severity mean in 342 cassava farms assessed in Cameroon.

considering their phytosanitary status. In their study, 
McGuire & Sperling (2016) reported that 90.2% of 
planting materials in such areas are sourced from the 
informal sector. Farmers also tend to underestimate 
CMD severity and neglect recommended cultural 
practices, further driving disease spread (Chikoti & 
Tembo, 2022; Houngue et al., 2022; Mouketou et al., 
2022). Kuate et al. (2017) demonstrated that proper 
phytosanitary measures can significantly reduce 
CMD incidence in Cameroon’s tropical rainforest 
zone. Combining resistant or tolerant varieties with 
improved phytosanitation offers a promising approach 
to reducing CMD prevalence. 

In the Southern Region, the Vallée-du-Ntem 
and Mvila divisions recorded very high incidences 
of 86.30% and 92.42%, respectively, indicating that 
these are potential hotspots for CMD in Cameroon. 
Immediate action is needed to promote farmer access 
to virus-free planting materials, either through certified 
seed multipliers or subsidized programs. Conversely, 
the relatively low incidence observed in the Far North 
may be linked to the recent introduction of cassava, 
which occupies less than 1% of cultivated land in 
the region. Similarly, the low incidence in Adamawa 
likely reflects the distribution of improved varieties by 
humanitarian and development programs supporting 
local populations and refugees from the Central African 
Republic (Kegah et al., 2019; Tchuente et al., 2024). 

Whitefly Population. The mean number of whiteflies 

per plant across all surveyed fields in Cameroon was 
5.86. This difference was statistically significant,  
confirming that the variation in whitefly abundance 
among the 342 surveyed fields was not due to chance 
(W = 0, df = 341, P < 0.0001). Regional means varied 
considerably, ranging from 0.40 in the Far North 
Region to 21.44 in the South West Region (Table 5). At 
the divisional scale, Ndian recorded the highest mean 
(30.40), while Mayo-Louti had the lowest (0.03). No 
whiteflies were detected in Mayo-Tsanaga (Far North 
Region). 

At the field level, exceptionally high mean 
densities (>50 whiteflies/plant) were recorded in 
Mabanda (Meme Division, 82.03), Mabeta (Fako 
Division, 57.80), Bwasa (Fako Division, 56.40), 
and Koukoue (Sanaga-Maritime Division, 54.93). 
Maximum counts per plant ranged from 6 in the Far 
North to 222 in the South West (Table 5). The overall 
mean (5.86) was consistent with values previously 
reported by Doungous et al. (2022) in Cameroon. 
Comparable infestations have been documented in 
North-Eastern Nigeria (42.39), the North-Western 
Democratic Republic of Congo (5.74), and Zambia 
(11.1 in 2013 and 10.8 in 2015) (Abubakar et al., 2019; 
Chikoti et al., 2020; Likiti et al., 2023). Notably, Legg 
(2010) suggested that threshold of five whiteflies per 
plant on apical leaves is sufficient to trigger epidemic 
risk. 

High whitefly abundance in Cameroon is 
likely influenced by multiple factors, including 
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varietal susceptibility, differences in whitefly species, 
cropping systems (monoculture vs. intercropping), and 
phytosanitary practices. Environmental conditions, 
particularly altitude, temperature, humidity, and 
rainfall, also play critical roles in vector survival, 
reproduction, and dispersal (Fondong et al., 2002; 
Abubakar et al., 2019; Chikoti et al., 2020; Chikoti & 
Tembo, 2022; Houngue et al., 2022). These findings 
highlight the need for efficient, integrated control 
measures targeting whitefly populations. 

Interestingly, some CMD-free fields also showed 
relatively high mean whitefly densities (~ 5.13/plant). 
A similar observation was made by Omongo et al. 
(2012), who reported that the improved cassava variety 
I92/0067 supported more eggs and nymphs of B. tabaci 
than the local Njule red. This suggests that improved 
varieties grown in some surveyed areas may be more 
attractive to whiteflies.
        Furthermore, whitefly densities were particularly 
high in the Littoral and South West Regions. This 
aligns with findings by Aregbesola et al. (2020), who 
reported that the optimal survival temperature for B. 
tabaci (SSA-ESA subgroup) ranges from 26–28 ºC. 
The mean annual temperatures and rainfall patterns 
in these regions are therefore highly favorable for the 
development and persistence of B. tabaci. 

Relationship between Whitefly Population, CMD 
Incidence, CMD Severity, and Cropping System. 
The mean number of whiteflies per field showed a 
weak but significant positive correlation with CMD 
incidence (r = 0.3; P < 0.0001). As illustrated in 
Figure 8, whitefly populations tended to increase when 
CMD incidence exceeded 25%. CMD severity was 
also weakly correlated with incidence (r = 0.2475; 
P < 0.0001) (Table 6). The highest mean number of 
whiteflies (7.20) was recorded on plants with severity 
score 2, while the lowest (3.57) occurred at severity 
score 5. This resulted in a very weak and non-
significant negative correlation between severity and 
whitefly abundance (r = -0.0568; P = 0.2947) (Table 
6). Notably, whitefly density decreased progressively 
as severity increased from score 2 onward (Figure 9). 
These findings are consistent with results from Zambia 
(Chikoti et al., 2020), Nigeria (Eni et al., 2021), and 
Cameroon (Doungous et al., 2022), although other 
studies have reported different trends. For example, 
Kuate et al. (2017) observed a negative correlation 
between whitefly numbers and CMD incidence in the 
TMS 92/0326 variety, while Houngue et al. (2022) 
found no correlation in Benin. These differences 
suggest that CMD incidence is not solely determined 
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by vector abundance but also influenced by factors 
such as the use of infected cuttings and cross-field 
transmission.

Surveyed fields spanned a wide altitudinal 
range, from 0.3 m above sea level in coastal regions to 
1,549.1 m in the western highlands. Statistical analysis 
showed a weak but significant negative correlation 
between whitefly abundance and altitude (r = –0.28; 
P < 0.0001) (Table 6), confirming earlier observations 
that whitefly populations decline with increasing 

elevation (Doungous et al., 2022). 
To evaluate the effect of cropping systems, 

boxplots were generated for CMD incidence, severity, 
and whitefly abundance. Of all surveyed fields, 50.88% 
were intercropped, while 49.12% were monocropped. 
Intercrops included groundnut, cocoyam, maize, yam, 
sweet potato, beetroot (Beta vulgaris), folere (Hibiscus 
sabdariffa), beans, pepper, plantain, millet, okra, egusi, 
and bitter-leaf. No significant differences in CMD 
incidence and severity were observed between systems. 

Figure 8. Mean number of whiteflies per plant by CMD incidence band. Bars represent the standard error of the 
mean SEM.
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Figure 9. Mean number of whiteflies per plant at each CMD severity score. Bars represent the standard error of 
the mean (SEM).

      Variables  r  CI95%  P-value Power
CMD severity CMD incidence 0.2475** [0.15 ; 0.34] 3.62x10-6 0.996525
CMD severity Whitefly abundance -0.0568 [-0.16 ; 0.05] 0.2947 0.182346
CMD severity Altitude 0.2703** [0.17 ; 0.37] 3.87x10-7 0.999185

CMD incidence Whitefly abundance 0.3000** [0.2 ; 0.39] 1.55x10-8 0.999909
CMD incidence Altitude -0.1044 [-0.21 ; 0] 0.0537 0.488919

Whitefly abundance Altitude -0.2849** [-0.38 ; -0.18] 8.29x10-8 0.999711

Table 6. Pairwise Spearman’s correlations among mean whitefly number per field, mean CMD severity, mean 
CMD incidence, and altitude

**, significant at P < 0.0001 (two-sided), n = 342
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However, incidence was higher in intercropped fields 
(66.80%) compared with monocropped ones (46.50%). 
Severity was similar, with median values of 2.28 
(intercropped) and 2.35 (monocropped) (Figure 10).

Whitefly abundance, however, varied 
significantly with cropping system. Intercropped fields 
averaged 3.5 whiteflies per plant, compared with 1.3 
in monocropped fields (Figure 11). Notably, fields 
intercropped with bitter-leaf recorded very high whitefly 
densities (57.8/plant), while those intercropped with 
maize (2.5), groundnut, and yam (0.2) had much lower 
densities (Figure 12). CMD incidence was highest in 
cassava–maize–plantain systems (median = 0.88) and 
lowest in cassava–sweet potato systems (median = 
0.48) (Figure. 13). 

These observations contrast with findings from 
other regions, where intercropping cassava with maize, 
cowpea, or green gram significantly reduced CMD 
incidence, severity, and vector populations (Fondong 
et al., 2002; Uzokwe et al., 2016; Sam et al., 2021). 
Similarly, Ewusie et al. (2010) reported fewer B. tabaci 

eggs, nymphs, and adults in cassava bordered by cotton 
or Jatropha curcas, highlighting the potential of strip 
cropping as a management strategy. In addition, Togni 
et al. (2018) demonstrated that tomato–coriander 
intercropping with sprinkler irrigation reduced B. 
tabaci infestations in organic tomato systems. These 
studies indicate that the effectiveness of intercropping 
in reducing vector populations depends heavily on 
crop combinations, local ecology, and management 
practices. In the present study, some intercrops may 
have acted as alternative hosts for B. tabaci, potentially 
increasing vector abundance and CMD incidence. 

Source of Infection. Field observations indicated that 
the main source of CMD infection in Cameroon was 
the use of infected cuttings for planting, accounting 
for 98.37% of symptomatic plants. Only 1.63% of 
infections were attributed to whitefly transmission. 
However, vector-borne transmission was considerably 
higher in the Far North Region (Table 7). These 
findings underscore the importance of strengthening 
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Figure 10. Cassava mosaic disease (CMD) severity and incidence according to cropping system in Cameroon. A. 
CMD severity; B. CMD incidence.
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Figure 13. Mean cassava mosaic disease (CMD) incidence according to intercropping system in cassava fields. 
Intercrops: 1 = Maize; 2 = Maize–Egusi; 3 = Maize–Sweet potato; 4 = Groundnut–Plantain; 5 = Bitter 
leaf; 6 = Plantain; 7= Groundnut; 8 = Maize–Plantain; 9 = Maize–Groundnut; 10 = Maize–Groundnut–
Plantain; 11 = Maize–Groundnut–Sweet potato; 12 = Maize–Groundnut–Cocoyam–Plantain; 13 = 
Maize–Plantain–Cocoyam ; 14 = Plantain–Pepper; 15 = Egusi; 16 = Maize–Okra; 17 = Cocoyam; 18 = 
Sweet potato; 19 = Maize–Sweet potato–Millet; 20 = Groundnut–Sweet potato; 21= Maize–Beans; 22 
= Maize–Groundnut–Beans–Sweet potato; 23 = Beetroot; 24 = Folere; 25 = Groundnut–Yam.

phytosanitary practices, particularly the distribution 
and use of clean planting materials. Other potential 
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Figure 12. Whitefly population according to intercropping systems in cassava fields. Intercrops: 1 = Maize; 2 
= Maize–Egusi; 3 = Maize–Sweet potato; 4 = Groundnut–Plantain; 5 = Bitter leaf; 6 = Plantain; 7 
=  Groundnut; 8 = Maize–Plantain; 9 = Maize–Groundnut; 10 = Maize–Groundnut–Plantain; 11 = 
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Cocoyam; 14= Plantain–Pepper; 15 = Egusi; 16 = Maize–Okra; 17 = Cocoyam; 18 = Sweet potato; 
19 = Maize–Sweet potato–Millet; 20 = Groundnut–Sweet potato; 21 = Maize–Beans; 22 = Maize–
Groundnut–Beans–Sweet potato; 23 = Beetroot; 24 = Folere; 25 = Groundnut–Yam.
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as part of integrated disease management (Uzokwe et 
al., 2016; Sam et al., 2021; Doungous et al., 2022). 

CONCLUSION

This study reveals that cassava mosaic disease 
(CMD) is widespread across all ten regions of 
Cameroon, with high incidence and severity particularly 
in the South, Littoral, East, and Centre regions. The 
main driver of CMD spread is the use of infected 
cuttings, while whitefly-mediated transmission is more 
important in the Far North. Incidence and whitefly 
populations were higher in intercropped fields, 
though cassava–maize and cassava–sweet potato 
systems showed potential to suppress whiteflies and 
reduce CMD incidence, respectively. These findings 
underscore the need for clean planting materials, 
improved phytosanitary practices, and vector control 
within integrated management strategies. Future 
research should investigate the genetic diversity of 
cassava mosaic geminiviruses and Bemisia tabaci 
biotypes in Cameroon to support more effective disease 
management. 
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