Pages: 31–45 DOI: 10.23960/j.hptt.12631-45

### RESEARCH PAPER

# Preliminary performance screening of microbial consortia on fusarium basal rot control and shallot growth

Siti Nur Aisyah<sup>1</sup>, Kulsum Kurnia Asih<sup>1</sup>, Dyah Rahmawati Suseno<sup>1</sup>, Aprilia Budhi Setiawan<sup>1</sup>, Agung Astuti<sup>1</sup>, Taufiq Hidayat<sup>1</sup>, Elly Syafriani<sup>3</sup>, Jennifer Ann Harikrishna<sup>2</sup>, & Siska Wahyuni Putri<sup>1</sup>

Manuscript received: 6 October 2024. Revision accepted: 22 April 2025. Available online: 26 November 2025.

# **ABSTRACT**

Developing an effective biocontrol consortium requires comprehensive assessment to ensure that the selected microbial combinations can provide both strong disease suppression and plant growth-promoting effects. This study aimed to evaluate the performance of four biocontrol consortia composed of indigenous microbes from Bantul Regency, Indonesia, in suppressing Fusarium basal rot (FBR) and promoting the growth of shallot (*Allium cepa var. aggregatum*) cv. *Bauji*. Three indigenous isolates were used: *Trichoderma asperellum* strain PBt1, *Bacillus cereus* strain PBt2, and *B. cereus* strain PBt3. Four consortia were formulated by combining two or three of these isolates, designated as Consortia A, B, C, and D. The biocontrol activity against *Fusarium solani* DRB-1 was evaluated for both single isolates and consortia. A greenhouse experiment was conducted using a Completely Randomized Design with two inoculation timings (before planting and early vegetative stage) and five replicates. The performance of each consortium was assessed based on FBR severity and shallot growth parameters. Results showed that Consortia B (*T. asperellum* PBt1 + *B. cereus* PBt3) applied before planting achieved the highest FBR reduction (34.8%) at 42 days after planting (DAP). Moreover, this consortium significantly enhanced shallot yield, as reflected by increased bulb weight and number. These findings suggest that Consortia B has strong potential to improve both FBR management efficacy and shallot productivity.

Keywords: Allium, bacillus, biological control, sustainable, Trichoderma

#### INTRODUCTION

Fusarium basal rot (FBR) is one of the major diseases infecting many *Allium* species, including economically important crops such as shallot, onion, leek, and garlic. The economic losses caused by this disease vary among crop depending on the developmental stage at which infection occurs. FBR typically reduces plant vigor and induces rot symptoms on roots, basal stems, and bulbs (Degani et al., 2022). The disease can be caused by a single *Fusarium* species or a species complex (Tirado-Ramírez et al.,

Corresponding author:

Siti Nur Aisyah (sitinur@umy.ac.id)

<sup>1</sup>Department of Agrotechnology, Faculty of Agriculture, Universitas Muhammadiyah Yogyakarta, Special Region of Yogyakarta, Indonesia 55183

<sup>2</sup>Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia 50603

<sup>3</sup>Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada. Jl. Bulaksumur, Sleman, Yogyakarta, Indonesia 55281 2019). The occurrence of FBR in *Allium* species is associated with different *Fusarium* species depending on the host species and geographical factors (Le et al., 2021; Sharma et al., 2024). Furthermore, the pathogenicity of these *Fusarium* species is strongly influenced by host susceptibility and geographic origin (Galván et al., 2008; Le et al., 2021; Taylor et al., 2016), resulting in diverse infection modes and making disease management particularly challenging.

ISSN: 1411-7525

E-ISSN: 2461-0399

In Indonesia, FBR has been reported to cause significant yield losses in shallot cultivation, ranging from 50% to 100% (Herlina et al., 2021). Several studies have shown variations in FBR incidence across regions in Java, including Brebes (32.1%), Probolinggo (80%), and Bantul (33.9–80%) (Aisyah et al., 2022; Nurcahyanti & Sholeh, 2023; Supyani et al., 2021; Wibowo et al., 2023). These differences may be related to variations in the *Fusarium* species infecting shallots in each area. To date, several *Fusarium* species have been identified as FBR causal agents in Indonesia, including *F. oxysporum* f.sp. *cepae, F. solani, F. acutatum, F. proliferatum, F. verticillioides,* and *F. pallidoroseum* (Cahyaningrum et al., 2020; Herlina et al., 2021; Lestiyani et al., 2014; Marianah et

al., 2024). Management of FBR is particularly difficult because *Fusarium* species are soilborne pathogens. Their survival structures, chlamydospores, allow them to persist in the soil for long periods as saprophytes (Grünwald et al., 2000; Lucas, 2006).

Various management strategies have been proposed to mitigate FBR incidence, including the use of biological control agents (Sharma et al., 2024). Biological control (biocontrol) offers an environmentally friendly alternative to chemical pesticides, as it minimizes negative environmental impacts (Jamil et al., 2021; Kalman et al., 2020; Lecomte et al., 2016). Among the numerous biocontrol agents, Trichoderma and Bacillus species have been widely recognized for their effectiveness in suppressing Fusarium-induced diseases in Allium crops (Bunbury-Blanchette & Walker, 2019; Kara et al., 2023; Karim et al., 2022; Shin et al., 2023). However, Karim et al. (2022) noted that the antifungal activity of *Trichoderma* and *Bacillus* can be enhanced when used in consortium with other compatible microorganisms. The use of microbial consortia can improve disease suppression due to synergistic interactions and multiple modes of action (Wong et al., 2019).

The application of multi-species consortia has proven more effective in controlling Fusarium wilt in several crops, such as chickpea (Ankati et al., 2021) and banana (Kaleh et al., 2023; Prigigallo et al., 2022). Similarly, promising results have been reported for FBR management in Allium species, including garlic, onion, and shallot (Dewi et al., 2025; Diabankana et al., 2024; Krestini et al., 2020; Sari et al., 2023). A microbial consortium combining Trichoderma, Bacillus, and Pseudomonas was effective in suppressing FBR in shallot fields located in coastal areas of Bantul Regency, Yogyakarta, Indonesia (Sari et al., 2023). However, that consortium was developed using non-indigenous microorganisms. To enhance biocontrol efficacy, the source of microbial strains is critical, as indigenous microbes typically exhibit better adaptability and bioactivity under local conditions. Moreover, there are currently no registered microbial consortium products for FBR management in shallots in Indonesia, highlighting the need to develop effective indigenous-based biocontrol formulations. Therefore, this study aimed to evaluate the performance of several

potential microbial consortia composed of indigenous isolates from Bantul, Yogyakarta, in suppressing FBR infection and promoting shallot growth.

## MATERIAL AND METODS

**Research Site.** This study was conducted in the Laboratory of Agrobiotechnology and greenhouse facilities, Faculty of Agriculture, Universitas Muhammadiyah Yogyakarta, Indonesia, from June 2021 to April 2022.

**Preparation of Microbes Isolates.** The fungal pathogen used in this study was *Fusarium solani* strain DRB-1, isolated from FBR-infected shallots in Bantul Regency (Aisyah et al., 2022). Molecular characterization using internal transcribed spacer (ITS1–4) primers confirmed its identity as *F. solani*. The isolate was cultured on Potato Dextrose Agar (PDA) and incubated at room temperature  $(29 \pm 2 \, ^{\circ}\text{C})$  under dark conditions.

Three indigenous biocontrol isolates were obtained from the in-house collection of the Laboratory of Plant Pests and Diseases Observation, Pandak, Bantul, Indonesia. All isolates were molecularly characterized using 16S rRNA (for bacteria) and ITS (for fungi) to confirm their species identify (Table 1). The bacterial isolates were grown on Nutrient Agar (NA) for 48 h at room temperature (29  $\pm$  2 °C), while the fungal isolate was maintained using the same culture procedure as *F. solani* DRB-1.

**In-vitro Antagonistic Assay of Single Biocontrol Isolates.** The antagonistic activity of each indigenous isolates was evaluated in vitro to determine its ability to suppres F. solani DRB-1 growth. The assay followed a Completely Randomized Design (CRD) and was conducted using a dual culture technique as described by Aisyah et al. (2016). Each biocontrol isolate (Table 1) was co-cultured with F. solani DRB-1 on PDA and incubated for 7 days at room temperature (29  $\pm$  2 °C).

Fungal colony diameter was measured daily for 7 days, and the percentage of growth inhibition was calculated using the formula proposed by Islam et al. (2012):

Table 1. Details of biocontrol isolates used in this study

| Isolate code | Source of collection (Location)      | Identified species     |
|--------------|--------------------------------------|------------------------|
| PBt1         | Shallot rhizosphere (Pandak, Bantul) | Trichoderma asperellum |
| PBt2         | Shallot rhizosphere (Pandak, Bantul) | Bacillus cereus        |
| PBt3         | Shallot rhizosphere (Pandak, Bantul) | Bacillus cereus        |

$$I = \frac{dUf - dTf}{dUf} \times 100(\%)$$

I(%) = Inhibition;

dU<sub>f</sub> = Diameter of *F. solani* DRB-1 in control (non-antagonistic) medium;

dTf = Diameter of *F. solani* DRB-1 in antagonistic medium.

Each treatment consisted of five replicates. The control consisted of *F. solani* DRB-1 cultured alone on PDA without biocontrol isolates.

**In-vitro Compatibility Screening for Consortia Assembly.** Compatibility among biocontrol isolates was tested to determine potential combinations for consortium formulation. The experiment was designed in completely randomized design (CRD) with four types of consortia as follows:

Consortium A: *T. asperellum* PBt1 + *B. cereus* PBt2; Consortium B: *T. asperellum* PBt1 + *B. cereus* PBt3; Consortium C: *B. cereus* PBt2 + *B. cereus* PBt3;

Consortium D: *T. asperellum* PBt1 + *B. cereus* PBt2 + *B. cereus* PBt3.

Compatibility was tested using a modified dual culture method (Aisyah et al., 2016). Isolates composing each consortium were positioned 3 cm apart from the fungal pathogen, as illustrated in Figure 1, and incubated for 7 days at  $29 \pm 2$  °C under dark conditions. *F. solani* DRB-1 cultured alone served as control. Fungal growth inhibition was recorded daily using the same procedure described above. A consortium was defined as compatible when its fungal suppression rate exceeded that of the individual isolates.

**Preparation of Shallot Plants.** Shallot (*Allium cepa* var. *aggregatum*) cv. *Bauji* bulbs were used as planting material. Regosol soil was furnigated with 5% formalin,

sealed for 7 days, and then aerated for another 7 days. The treated soil was filled into polybags (35 × 35 cm) and mixed with manure (44.9 g/polybag) and SP-36 fertilizer (1.83 g/polybag). One bulb was planted per polybag and maintained for 60 days with routine watering. Urea (0.815 g/polybag) and KCl (0.625 g/polybag) fertilizers were applied at 15 and 30 days after planting. Observed growth parameters included plant height, leaf width, leaf number, plant weight, bulb weight, and bulb number.

Preparation of Microbial Inoculum Using Alternative Media. Before the in-planta assay, both pathogen and biocontrol isolates were propagated in alternative media. *T. asperellum* PBt1 was cultured on corn medium for 14 days until the conidial density reached 10<sup>7</sup> conidia/mL. *B. cereus* strains PBt2 and PBt3 were grown in sugar–potato broth for 18 h to obtain a concentration of 10<sup>6</sup> CFU/mL. *F. solani* DRB-1 inoculum was prepared in corn–meal sand medium (100 g sand and 5.6 g corn flour) and incubated for 3 weeks until the spore density reached 10<sup>7</sup> spores/mL.

**In-planta Biocontrol Assay of Consortia.** The inplanta biocontrol experiment was conducted using a CRD with two inoculation timings: 1. Before planting (7 days before planting); 2. Early vegetative (7 days after planting; DAP).

Each treatment was replicated three times, with each replicate consisting of ten plants. All isolates composing a consortium were applied simultaneously according to the designated inoculation time.

For the before planting treatment, 20 mL of T. asperellum PBt1 suspension ( $10^7$  conidia/ml) and 10 mL of each B. cereus suspension ( $10^6$  CFU/ml) were poured into each polybag 7 days prior to planting. For

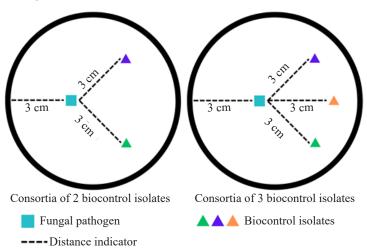



Figure 1. Schematic illustration of the dual culture assay procedure conducted in this study.

the early vegetative treatment (7 DAP), the suspensions were applied near the root zone and lightly covered with soil. Pathogen inoculation (20 mL of *F. solani* DRB-1 suspension, 10<sup>7</sup> spores/mL) was performed at 7 DAP via soil drenching near the root zone.

Control plants were inoculated with the pathogen only, without biocontrol application. Disease symptoms were monitored biweekly, based on the appearance of characteristic leaf twisting (Table 2). Disease severity was calculated according to the following formula:

DS (%) = 
$$\frac{\sum (n_i \times v_i)}{N \times V} \times 100$$

DS (%) = Disease Saverity;

n<sub>i</sub> = Number of plants with symptom score v<sub>i</sub>;

N = Total number of plants observed;

V = The highest symptom score.

**Statistical Analysis.** All data were analyzed using analysis of variance (ANOVA) in SPSS® version 23.0 (IBM, USA). Mean comparisons were performed using Duncan's New Multiple Range Test (DNMRT) at p < 0.05. Results are presented as mean  $\pm$  standard deviation, with statistical notations indicating significant differences among treatments.

## RESULTS AND DISCUSSION

Confirmation on Strain Compatibility for Consortia Assembly. Microbial compatibility is one of the key factors determining the efficacy of microbial consortia in reducing the severity of plant diseases. Based on in vitro screening, the growth inhibition produced by T. asperellum PBt1 increased significantly when applied as part of a consortium  $(61.4 \pm 6.07\%)$  compared to its single application  $(55.6 \pm 1.96\%)$  (Figure 2). In terms of compatibility, the consortium composed of T. asperellum PBt1 and B. cereus PBt2 exhibited a higher synergistic interaction compared to its pairing with B. cereus PBt3. Interestingly, the multi-strain consortium consisting of both B. cereus isolates (PBt2 + PBt3) also enhanced antagonistic activity against F. solani DRB-1, reaching a suppression level comparable to that of T.

asperellum PBt1 applied alone.

Under greenhouse conditions, each consortium exhibited distinct compatibility patterns. Among all treatments, Consortium B (T. asperellum PBt1 + B. cereus PBt3) showed the lowest FBR severity (34.8  $\pm$  5.02%) (Figure 3), indicating high efficacy in disease suppression. In addition, the multi-species Consortium A also resulted in a significant reduction in FBR severity (43.6  $\pm$  6.23%) compared to the control (56.8  $\pm$  4.60%) (Figure 3). In contrast, the application of single biocontrol isolates was less effective in controlling FBR infection under in planta conditions.

In recent decades, the development of biocontrol consortia has increasingly focused on artificial or synthetic assembly approaches, in which consortium members are deliberately selected based on their desired functional traits. This strategy emphasizes both the biocontrol potential of each isolate and its level of compatibility with other microbial partners within the consortium. The combination of compatible microbes in a consortium often leads to greater success in managing plant diseases and enhancing plant defense mechanisms (Izquierdo-García et al., 2021; Kumar et al., 2021; Panchalingam et al., 2022; Wong et al., 2019).

The selection of Trichoderma and Bacillus genera in this study was based on their welldocumented biocontrol potential, as reported in previous studies (Ganuza et al., 2018; Giordano et al., 2023; He et al., 2019; Karuppiah et al., 2022; Li et al., 2020). Specifically, both T. asperellum and B. cereus have been recognized as effective antagonists against Fusarium-related diseases (Báez-Astorga et al., 2022; He et al., 2019; Karuppiah et al., 2022; Madriz-Ordeñana et al., 2022; Pazarlar et al., 2022; Ramírez et al., 2022; Zhang et al., 2020). Moreover, previous studies have demonstrated that consortia composed of *Trichoderma* and *Bacillus* species exhibit strong compatibility, resulting in synergistic effects that enhance the management of Fusarium diseases (Izquierdo-García et al., 2021; Izquierdo-García et al., 2020; Jangir et al., 2019; Liu et al., 2022; Prigigallo et al., 2022).

Table 2. Scoring system used to assess FBR symptoms on shallot leaves

| Score | Symptom description  |
|-------|----------------------|
| 0     | No leaf twisting     |
| 1     | ≤ 10% leaf twisting  |
| 2     | 11–30% leaf twisting |
| 3     | 31–75% leaf twisting |
| 4     | > 75% leaf twisting  |

Adjustment of Biocontrol Consortia Inoculation Time on FBR Disease Development. The efficacy of microbial consortia as biocontrol agents is influenced by various environmental factors, including the timing of inoculation and the growth stage of the plant at the time of application. The present study revealed that the degree of FBR suppression by the same consortium could vary depending on the inoculation time under greenhouse conditions. As shown in Figure 4, consortia applied before planting exhibited higher biocontrol efficacy than those applied at the early vegetative stage (7 DAP). The pre-planting inoculation likely facilitated better microbial adaptation to the rhizosphere environment, thereby enhancing disease suppression. However, as the plants matured, the performance of this inoculation strategy became less stable in some consortia (Consortia A and B), as indicated by increased FBR severity between 45 and 60 DAP (Figure 4).

Conversely, consortia inoculated at the early vegetative stage were generally less effective in suppressing FBR infection. Inoculation at this stage resulted in more severe infections in younger plants (15 and 30 DAP) (Figure 4). Because both the pathogen and the consortia were introduced simultaneously, direct competition at the infection site likely hindered proper establishment of the applied biocontrol agents, reducing their survival and colonization success. Nonetheless, FBR severity in older plants (60 DAP) remained lower for the vegetative-stage inoculation compared to the pre-planting treatment, except for Consortium A (Figure 4).

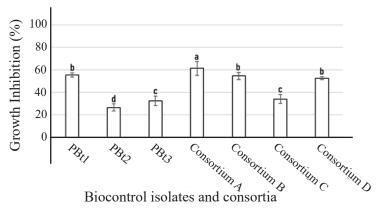
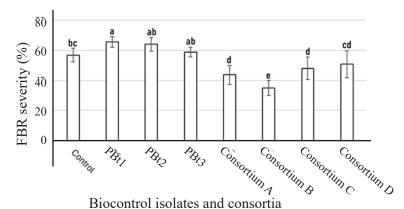
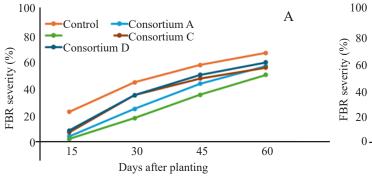



Figure 2. Comparison of *in vitro* suppression by single isolates and consortia against *Fusarium solani* DRB-1 after 7 days of incubation. Data represent mean values from five replicates, with standard deviation (SD) shown as error bars. Bars sharing the same lowercase letter are not significantly different according to DNMRT at p < 0.05. PBt1 = *Trichoderma asperellum* PBt1; PBt2 = *Bacillus cereus* PBt2; PBt3 = *Bacillus cereus* PBt3; Consortium A = PBt1 + PBt2; Consortium B = PBt1 + PBt3; Consortium C = PBt2 + PBt3; Consortium D = PBt1 + PBt2 + PBt3.





Figure 3. Comparison of Fusarium basal rot (FBR) severity resulting from the *in planta* application of single isolates and consortia. Data was collected at 42 days after planting. Values represent the mean of 50 representative plants ± SD. Bars sharing the same lowercase letter are not significantly different according to DNMRT at p < 0.05. PBt1 = *Trichoderma asperellum* PBt1; PBt2 = *Bacillus cereus* PBt2; PBt3 = *Bacillus cereus* PBt3; Consortium A = PBt1 + PBt2; Consortium B = PBt1 + PBt3; Consortium C = PBt2 + PBt3; Consortium D = PBt1 + PBt2 + PBt3.

The suppression efficacy of FBR disease among consortia applied before planting varied across different consortium types (Figure 5). Compared with the control, Consortium B (T. asperellum PBt1 + T. cereus PBt3) achieved the highest suppression, with the lowest FBR severity recorded at 45 DAP ( $34.8 \pm 5.02\%$ ) and 60 DAP ( $51.2 \pm 7.56\%$ ) (Figure 5). However, when the same consortium was applied at the early vegetative stage, a decline in performance was observed (Figure 5). Overall, these findings suggest that the inoculation time had no significant impact on the relative efficacy between the two consortium types tested.

The observed instability in biocontrol performance following pre-planting inoculation might be attributed to the use of fumigated soil as the growth medium during testing. Fumigated soil typically exhibits low microbial diversity, which may hinder the establishment and persistence of the introduced consortia, thereby reducing their periodic efficacy. This hypothesis aligns with previous reports emphasizing the

crucial role of soil microbial diversity in maintaining soil health and quality (Fierer et al., 2021; Zhao et al., 2018). Furthermore, interactions between introduced consortia and native soil microbes are fundamental to plant growth-promoting effects (Bhatt et al., 2021). The application of exogenous microbial consortia can modify the soil microbiome, stimulating beneficial native microorganisms and reinforcing the positive effects of inoculated biocontrol agents (Jangir et al., 2019; Stummer et al., 2022).

Such community-based interactions form the underlying principle of microbial consortia technology—combining a diverse array of microbial species to produce holistic benefits for plant growth and disease suppression (Nunes et al., 2024; Palmieri et al., 2017; Ram et al., 2022). Considering the limitations of the present study, further investigation using non-fumigated (living) soil is needed to better evaluate consortium performance and its effects on the native soil microbiome.



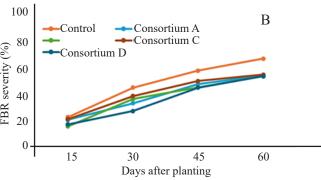
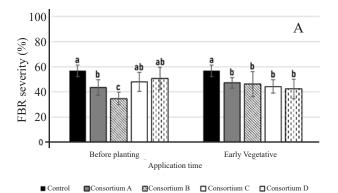




Figure 4. Comparison of the dynamics of Fusarium basal rot (FBR) development among various biocontrol consortia. A. Applied before planting; B. At the early vegetative stage (7 DAP). Data shown are mean values from 50 representative plants. Consortium A = PBt1 + PBt2; Consortium B = PBt1 + PBt3; Consortium C = PBt2 + PBt3; Consortium D = PBt1 + PBt2 + PBt3; Control = No biocontrol applied.



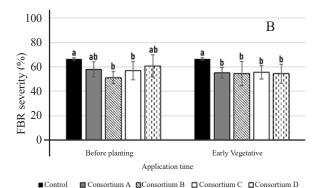



Figure 5. Comparison of Fusarium basal rot (FBR) severity resulting from the *in planta* application of various biocontrol consortia applied at two different periods (before planting and early vegetative). A. 45 DAP; B. 60 DAP. Data shown are mean values from 50 representative plants, followed by SD values as error bars. Bars with the same lowercase letter within the same application time are not significantly different based on DNMRT at p < 0.05. Consortium A = PBt1 + PBt2; Consortium B = PBt1 + PBt3; Consortium C = PBt2 + PBt3; Consortium D = PBt1 + PBt2 + PBt3; Control = No biocontrol applied.

Another aspect that warrants further exploration is the plant response to consortium inoculation, particularly regarding plant-microbe compatibility that may contribute to enhanced disease suppression. Because both the pathogen and the biocontrol microbes in this study are soil-borne, the rhizosphere serves as the primary site for plant-microbe interactions, which can exert both beneficial and detrimental effects on plant growth. Cai et al. (2021) reported that the plant rhizosphere harbors a multitude of symbiotic microorganisms with diverse ecological and physiological roles. The combined activity of these microbes can influence plant physiological and metabolic processes. Similarly, Zhalnina et al. (2018) highlighted that rhizosphere microbial communities are shaped by intricate feedback mechanisms among plants, microbes, and their environment. Plants, in turn, significantly affect the composition of the rhizosphere microbiota, with healthy plants often enriching populations of beneficial antagonists (Meng et al., 2019; Shen et al., 2014). Other studies have also demonstrated that the soil microbiome contributes to disease suppression through plant root exudates that selectively stimulate beneficial microbial populations (Li et al., 2014; Rosenzweig et al., 2012; Shen et al., 2015).

Impact of Biocontrol Consortia Inoculation on Shallot Growth. Inoculation of biocontrol consortia at different times resulted in varied effects on shallot growth parameters. Regarding plant height, no significant difference was observed between consortia applied before planting and those applied at the early vegetative stage (Figure 6), indicating that inoculation timing did not directly influence vertical growth. In contrast, a significant increase in leaf number was

recorded at 21 DAP in plants treated with Consortium A (*T. asperellum* PBt1 + *B. cereus* PBt2) and Consortium C (B. cereus PBt2 + B. cereus PBt3) applied before planting (Figure 7). Compared with the control, these results suggest that pre-planting inoculation of certain consortia can stimulate early leaf development in shallots. However, this growth-promoting effect diminished in older plants, as evidenced by leaf loss at later stages. Unlike pre-planting inoculation, consortia applied at the early vegetative stage showed no significant differences in leaf number compared with the control, except for Consortium D (Figure 7). Consistent with these findings, Resti & Liswarni (2021) reported that bacteria consortia inoculation in shallots did not significantly increase leaf number. Conversely, Sutariati et al. (2021) found that consortia of indigenous rhizobacteria successfully enhanced leaf production in shallot var. Wakatobi.

Interestingly, an increase in leaf area was observed at 42 DAP in plants treated with three consortia containing B. cereus PBt3 applied before planting. Leaf area from Consortia B, C, and D exceeded that of the control and Consortium A (Figure 8). Conversely, when these three consortia were applied at the early vegetative stage, both fresh and dry weights of plants at 42 DAP increased significantly compared to the control and Consortium A treatments (Figure 9). These findings suggest that the synergistic interaction between T. asperellum PBt1 and B. cereus PBt3 influenced shallot growth and FBR suppression differently depending on the inoculation time. Preplanting application effectively reduced disease incidence and promoted early vegetative growth, whereas application at the early vegetative stage appeared to help maintain plant quality under FBR infection. However, the specific mechanisms by which

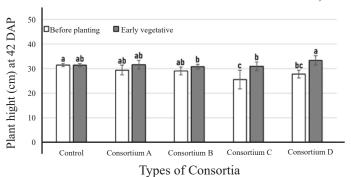
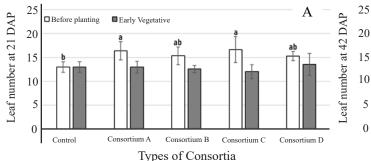




Figure 6. Comparison of shallot plant height at 42 DAP among various biocontrol consortia applied before planting and at early vegetative (7 DAP). Data shown are mean values from 30 representative plants, followed by SD values as error bar. Bars with the same color followed by the same lowercase letter are not significantly different based on DNMRT at p < 0.05. Consortium A = PBt1 + PBt2; Consortium B = PBt1 + PBt3; Consortium C = PBt2 + PBt3; Consortium D = PBt1 + PBt2 + PBt3; Control = No biocontrol applied.



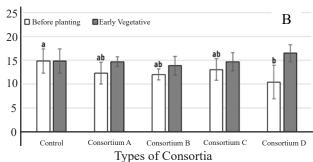



Figure 7. Comparison of the number of shallot leaves among various biocontrol consortia applied before planting and at early vegetative (7 DAP). A. 21 DAP; B. 42 DAP. Data shown are mean values from 30 representative plants followed by SD values as error bars. Bars with the same color followed by the same lowercase letter are not significantly different based on DNMRT at *p* < 0.05. Consortium A = PBt1 + PBt2; Consortium B = PBt1 + PBt3; Consortium C = PBt2 + PBt3; Consortium D = PBt1 + PBt2 + PBt3; Control = No biocontrol applied.

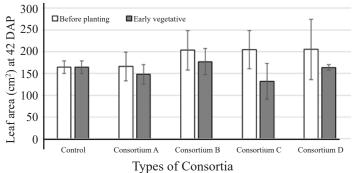



Figure 8. Comparison of shallot leaf area at 42 DAP among various biocontrol consortia applied before planting and at early vegetative (7 DAP). Data shown are mean values from 15 representative plants, followed by SD values as error bars. Consortium A = PBt1 + PBt2; Consortium B = PBt1 + PBt3; Consortium C = PBt2 + PBt3; Consortium D = PBt1 + PBt2 + PBt3; Control = No biocontrol applied.

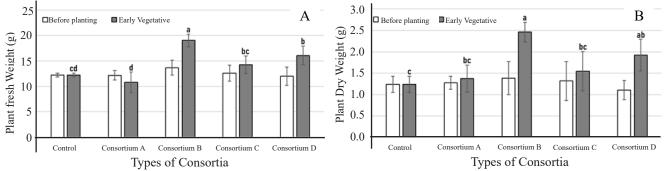



Figure 9. Comparison of plant fresh (A) and dry weight (B) at 42 DAP among various biocontrol consortia applied before planting and at early vegetative (7 DAP). Data shown are mean values from 15 representative plants followed by SD values as error bars. Bars with the same color followed by the same lowercase letters are not significantly different based on DNMRT at p < 0.05. Consortium A = PBt1 + PBt2; Consortium B = PBt1 + PBt3; Consortium C = PBt2 + PBt3; Consortium D = PBt1 + PBt2 + PBt3; Control = No biocontrol applied.

T. asperellum PBt1 and B. cereus PBt3 suppress FBR and promote growth remain to be elucidated.

Both *Bacillus* and *Trichoderma* species have been widely reported as effective biocontrol agents against various plant diseases, including *Fusarium* 

(Anbalagan et al., 2024; Ankati et al., 2021; Asrul, 2023; Bunbury-Blanchette & Walker, 2019; Dewi et al., 2025; Jamil et al., 2021; Kaleh et al., 2023; Modrzewska et al., 2022). According to Saxena et al. (2020), the antagonistic activity of *Bacillus* species

relies on multiple mechanisms, including antimicrobial compound production, induced systemic resistance, and biofilm formation. In contrast, *Trichoderma* species suppress pathogens through niche competition, mycoparasitism, antibiosis, and the production of plant growth–promoting metabolites (El-Komy et al., 2022; Guzmán-Guzmán et al., 2023; Kaur et al., 2022; Nofal et al., 2021; Rao et al., 2022; Romera et al., 2019). The FBR suppression achieved by the *T. asperellum* PBt1 and *B. cereus* PBt3 consortium (Figure 4) in this study is likely associated with one or more of these mechanisms, contributing to the improved growth performance observed in Figures 8 and 9.

The use of microbial consortia to manage Fusarium basal rot in Allium species has been well documented (Dewi et al., 2025; Diabankana et al., 2024; Krestini et al., 2020; Sari et al., 2023). This strategy is generally more effective than singlestrain applications, as microbes naturally coexist and interact within complex communities (Bhatia et al., 2018; Vacheron et al., 2013). Multi-species consortia can offer diverse modes of action, resulting in stronger disease suppression and enhanced plant productivity (Sarma et al., 2015). For instance, Dewi et al. (2025) demonstrated that a consortium combining B. amyloliquefaciens B1 and arbuscular mycorrhizal fungi (AMF) effectively mitigated FBR infection in garlic through synergistic mechanisms of direct antagonism and root colonization, improving both disease resistance and plant growth. Similarly, the combination of T. asperellum PBt1 and B. cereus PBt3 (Consortium B) in the present study reduced FBR severity and improved shallot growth, raising important questions about the mutualistic interactions between these microbes and the host plant that underlie their biocontrol efficacy.

One key factor determining the success of microbial consortia is compatibility among isolates, which shapes the type of interaction within the consortium. High compatibility promotes synergistic effects, enhancing both disease suppression and growth promotion (Minchev et al., 2021). However, ensuring microbial compatibility under in planta conditions remains challenging, as efficacy often varies across growth parameters. Izquierdo-García et al. (2021) quantified synergistic interactions among 10 microbial consortia and found that only 17% exhibited measurable synergism under field conditions. Although multi-strain consortia generally show higher efficacy, this advantage occurs only when constituent microbes provide complementary modes of action (Sylla et al., 2013). In this study, consortium composition was based on individual biocontrol performance in singleisolate assays; some combinations did not enhance performance when combined, consistent with findings by Izquierdo-García et al. (2021). Hence, investigating inter-isolate interactions is essential, as negative interactions among members may compromise overall consortium efficacy (Sarma et al., 2015).

Consortia inoculated at different growth stages also had varied effects on shallot yield. When applied before planting, Consortium A produced the highest oven-dried  $(1.7 \pm 0.25 \text{ g})$  and sun-dried bulb weights  $(8.6 \pm 0.73 \text{ g})$  among all treatments (Table 3). However, its efficacy declined when applied at the early vegetative stage, where Consortium B–treated plants yielded the heaviest bulbs (Table 3). Unlike bulb weight, the multi-strain Consortium C applied before planting produced the highest bulb number  $(5.6 \pm 0.55)$  (Table 4), while early vegetative inoculation had no significant effect on this parameter.

Overall, this study highlights that FBR suppression by biocontrol consortia also influenced shallot growth and yield in diverse ways. The superior FBR suppression by Consortium B (Figure 5) likely contributed to enhanced bulb quantity and quality (Tables 3 and 4). This result suggests that Consortium B created a synergistic interaction that effectively suppressed the disease while maintaining plant vigor, particularly in bulb development. These findings align with Resti & Liswarni (2021), who reported increased bulb dry weight following inoculation with bacterial endophyte consortia. The enhanced bulb growth in this study may also be related to the soil treatment method used, suggesting that the bulbs benefited more directly from microbial activity than aboveground tissues. Nevertheless, the level of FBR suppression achieved here was lower than that reported by Sutariati et al. (2021), who used a seed-soaking method for inoculation. Future studies should therefore compare different inoculation techniques to optimize consortium establishment and performance in controlling FBR infection.

## CONCLUSION

This study successfully demonstrated the potential of a microbial consortium comprising *Trichoderma asperellum* PBt1 and *Bacillus cereus* PBt3 in suppressing Fusarium basal rot (FBR) disease in shallots under greenhouse conditions. The consortium not only reduced FBR severity but also positively influenced shallot growth and yield parameters. However, the specific mechanisms

underlying this biocontrol activity—particularly the individual contribution of each microbial species to FBR suppression and plant growth promotion—remain to be elucidated. Furthermore, the compatibility of this consortium with the native soil microbiome and the host plant requires further investigation. Future studies should focus on evaluating its performance in living soil systems to better understand microbial interactions and synergistic effects that enhance plant health and disease resistance. Such insights will be essential to validate and optimize the practical use of this consortium for improving shallot productivity in sustainable agricultural systems.

### **ACKNOWLEDGMENTS**

The authors sincerely appreciate the supportive assistance provided by Erlinda Oktiastuti and Sumarsih during the laboratory testing, as well as Tri Hartanto during the greenhouse experiments.

# **FUNDING**

The authors gratefully acknowledge for funding provided by the Ministry of Higher Education, Sciences, and Technology through the Fundamental Research Grant for the fiscal year 2024 (Contract No. 0609.7/LL5INT/AL.04/2024, 49/KP-LRI/VI/2024).

### **AUTHORS' CONTRIBUTIONS**

According to the CRediT contributorship SNA performed taxonomy, the conceptualization, funding acquisition, data curation, formal analysis, methodology, validation, visualization, writing - original draft, and writing - review and editing. KKA, DRS, ABS, and SWP performed the experimental works, data collection, preparation of figures and tables, and project administration. AA performed the roles of methodology, funding acquisition, supervision. TH performed the roles of methodology, formal analysis, supervision, writing review and editing. ES performed the roles of funding acquisition and methodology. JAH performed the roles of visualization, data analysis, writing - review and editing.

# REFERENCE

Aisyah SN, Harnas H, Sulastri S, Retmi R, Fuaddi H, Fatchiyah F, Bactiar A, & Jamsari J. 2016. Enhancement of a novel isolate of *Serratia* 

- plymuthica as potential candidate for an antianthracnose. Pak. J. Biol. Sci. 9(6): 250–258. https://doi.org/10.3923/pjbs.2016.250.258
- Aisyah SN, Khoiruddin M, Hidayat T, & Astuti A. 2022. Comparison on *Fusarium* basal rot occurrence among shallot cultivations in Bantul regency. *IOP Conf. Ser.: Earth Environ. Sci.* 985: 012052. https://doi.org/10.1088/1755-1315/985/1/012052
- Anbalagan SA, Appusamy S, Kumaresan PV, Chellappan G, Narayanan S, Rangasamy A, Parveen K, Bukhari NA, & Sayyed R. 2024. Deciphering the biocontrol potential of *Trichoderma asperellum* (Tv1) against *Fusarium*-nematode wilt complex in tomato. *J. Basic Microbiol.* 65(1): e2400595. https://doi.org/10.1002/jobm.202400595
- Ankati S, Srinivas V, Pratyusha S, & Gopalakrishnan S. 2021. *Streptomyces* consortia-mediated plant defense against *Fusarium* wilt and plant growth-promotion in chickpea. *Microb. Pathog.* 157: 104961. https://doi.org/10.1016/j.micpath.2021.104961
- Asrul A. 2023. Potential of local *Bacillus* spp. isolates as wilt disease biocontrol agents for *Fusarium oxysporum* f.sp. *cepae* on *Allium* x *wakegi*. *Biodiversitas*. 24(9): 4989–4997. https://doi.org/10.13057/biodiv/d240942
- Báez-Astorga PA, Cázares-Álvarez JE, Cruz-Mendívil A, Quiroz-Figueroa FR, Sánchez-Valle VI, & Maldonado-Mendoza IE. 2022. Molecular and biochemical characterisation of antagonistic mechanisms of the biocontrol agent *Bacillus cereus* B25 inhibiting the growth of the phytopathogen *Fusarium verticillioides* P03 during their direct interaction *in vitro*. *Biocontrol Sci. Technol*. 32(9): 1074–1094. https://doi.org/10.1080/09583157.2022.2085662
- Bhatia SK, Yoon JJ, Kim HJ, Hong JW, Hong YG, Song HS, Moon YM, Jeon JM, Kim YG, & Yang YH. 2018. Engineering of artificial microbial consortia of *Ralstonia eutropha* and *Bacillus subtilis* for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production from sugarcane sugar without precursor feeding. *Bioresour. Technol.* 257: 92–101. https://doi.org/10.1016/j.biortech.2018.02.056
- Bhatt P, Bhatt K, Sharma A, Zhang W, Mishra S, & Chen S. 2021. Biotechnological basis of

- microbial consortia for the removal of pesticides from the environment. *Crit. Rev. Biotechnol.* 41(3): 317–338. https://doi.org/10.1080/073885 51.2020.1853032
- Bunbury-Blanchette AL & Walker AK. 2019. *Trichoderma* species show biocontrol potential in dual culture and greenhouse bioassays against *Fusarium* basal rot of onion. *Biol. Control*. 130: 127–135. https://doi.org/10.1016/j. biocontrol.2018.11.007
- Cahyaningrum H, Suryanti, & Widiastuti A. 2020. Response and resistance mechanism of shallot var. Topo, a north molluca's local variety against basal rot disease. *Paper presented at the 5th International Conference on Food, Agriculture and Natural Resources (FANRes 2019)*. pp. 71–75. https://doi.org/10.2991/aer.k.200325.015
- Cai X, Zhao H, Liang C, Li M, & Liu R. 2021. Effects and mechanisms of symbiotic microbial combination agents to control tomato *Fusarium* crown and root rot disease. *Front. Microbiol*.12: 629793. https://doi.org/10.3389/fmicb.2021.629793
- Degani O, Dimant E, Gordani A, Graph S, & Margalit E. 2022. Prevention and control of *Fusarium* spp., the causal agents of onion (*Allium cepa*) basal rot. *Horticulturae*. 8(11): 1071. https://doi. org/10.3390/horticulturae8111071
- Dewi FS, Dewi RR, Abadi AL, Setiawan A, Aini LQ, & Syib'li MA. 2025. Biocontrol of *Fusarium oxysporum* f.sp. *cepae* on Indonesian local garlic plants (*Lumbu Hijau*) using a consortium of *Bacillus amyloliquefaciens* B1 and arbuscular mycorrhizal fungi. *Mycobiology*. 53(1): 1–9. https://doi.org/10.1080/12298093.2024.243382
- Diabankana RGC, Frolov M, Islamov B, Shulga E, Filimonova MN, Afordoanyi DM, & Validov S. 2024. Identification and aggressiveness of *Fusarium* species associated with onion bulb (*Allium cepa* L.) during storage. *J. Fungi.* 10(2): 161. https://doi.org/10.3390/jof10020161
- El-Komy MH, Al-Qahtani RM, Ibrahim YE, Almasrahi AA, & Al-Saleh MA. 2022. Soil application of *Trichoderma asperellum* strains significantly improves *Fusarium* root and stem rot disease management and promotes growth in cucumbers in semi-arid regions. *Eur. J. Plant Pathol.* 162(3): 637–653. https://doi.org/10.1007/s10658-021-02427-0

- Fierer N, Wood SA, & de Mesquita CPB. 2021. How microbes can, and cannot, be used to assess soil health. *Soil Biol. Biochem.* 153: 108111. https://doi.org/10.1016/j.soilbio.2020.108111
- Galván GA, Koning-Boucoiran CF, Koopman WJ, Burger-Meijer K, González PH, Waalwijk C, Kik C, & Scholten OE. 2008. Genetic variation among *Fusarium* isolates from onion, and resistance to *Fusarium* basal rot in related *Allium* species. *Eur. J. Plant Pathol*. 121(4): 499–512. https://doi.org/10.1007/s10658-008-9270-9
- Ganuza M, Pastor N, Erazo J, Andrés J, Reynoso MM, Rovera M, & Torres AM. 2018. Efficacy of the biocontrol agent *Trichoderma harzianum* ITEM 3636 against peanut smut, an emergent disease caused by *Thecaphora frezii*. *Eur. J. Plant Pathol*. 151: 257–262. https://doi.org/10.1007/s10658-017-1360-0
- Giordano DF, Pastor NA, Rouws LFM, de Freitas KM, Erazo JG, Canto AD, Coelho IdS, Oddino CM. & Torres AM. 2023. *Trichoderma harzianum* ITEM 3636 colonizes peanut roots as an endophyte and protects the plants against late leaf spot. *Symbiosis*. 89(3): 337–352. https://doi.org/10.1007/s13199-023-00913-z
- Grünwald NJ, Hu S, & van Bruggen A. 2000. Short-term cover crop decomposition in organic and conventional soils: Characterization of soil C, N, microbial and plant pathogen dynamics. *Eur. J. Plant Pathol.* 106(1): 37–50. https://doi.org/10.1023/A:1008720731062
- Guzmán-Guzmán P, Kumar A, de Los Santos-Villalobos S, Parra-Cota FI, Orozco-Mosqueda MdC, Fadiji AE, Hayder S, Babalola OO, & Santoyo G. 2023. *Trichoderma* species: Our best fungal allies in the biocontrol of plant diseases—A review. *Plants*. 12(3): 432. https://doi.org/10.3390/plants12030432
- He A, Sun J, Wang X, Zou L, Fu B, & Chen J. 2019. Reprogrammed endophytic microbial community in maize stalk induced by *Trichoderma asperellum* biocontrol agent against *Fusarium* diseases and mycotoxin accumulation. *Fungal Biol.* 123(6): 448–455. https://doi.org/10.1016/j.funbio.2019.03.003
- Herlina L, Istiaji B, & Wiyono S. 2021. The causal agent of *Fusarium* disease infested shallots in Java Islands of Indonesia. *E3S Web Conf.* 232: 03003. https://doi.org/10.1051/e3sconf/202123203003

Islam MR, Jeong YT, Lee YS, & Song CH. 2012. Isolation and identification of antifungal compounds from *Bacillus subtilis* C9 inhibiting the growth of plant pathogenic fungi. *Mycobiol*. 40(1): 59–65. https://doi.org/10.5941/MYCO.2012.40.1.059

- Izquierdo-García LF, Cotes AM, & Moreno-Velandia C. 2021. Screening for effective microbial consortia against fusarium wilt of cape gooseberry (*Physalis peruviana*). *BioControl*. 66(5): 713–725. https://doi.org/10.1007/s10526-021-10095-6
- Izquierdo-García LF, González-Almario A, Cotes AM, & Moreno-Velandia C. 2020. *Trichoderma virens* Gl006 and *Bacillus velezensis* Bs006: A compatible interaction controlling fusarium wilt of cape gooseberry. *Sci. Rep.* 10(1): 6857. https://doi.org/10.1038/s41598-020-63689-y
- Jamil A, Musheer N, & Ashraf S. 2021. Antagonistic potential of *Trichoderma harzianum* and *Azadirachta indica* against *Fusarium oxysporum* f.sp. *capsici* for the management of chilli wilt. *J. Plant Dis. Prot.* 128(1): 161–172. https://doi.org/10.1007/s41348-020-00383-1
- Jangir M, Sharma S, & Sharma S. 2019. Target and non-target effects of dual inoculation of biocontrol agents against fusarium wilt in *Solanum lycopersicum*. *Biol. Control*. 138: 104069. https://doi.org/10.1016/j.biocontrol.2019.104069
- Kaleh AM, Singh P, Mazumdar P, Wong GR, Chua KO, & Harikrishna JA. 2023. A halotolerant plant growth promoting consortium of *Bacillus* sp. RB3 and *Pseudomonas* sp. EB3 primes banana, *Musa acuminata* cv. Berangan, against salinity and Foc-TR4 stresses. *Curr. Plant Biol.* 35: 100294. https://doi.org/10.1016/j.cpb.2023.100294
- Kalman B, Abraham D, Graph S, Perl-Treves R, Harel YM, & Degani O. 2020. Isolation and identification of *Fusarium* spp., the causal agents of onion (*Allium cepa*) basal rot in Northeastern Israel. *Biology*. 9(4): 69. https://doi.org/10.3390/biology9040069
- Kara M, Soylu S, Gümüş Y, Soylu EM, Uysal A, & Kurt Ş. 2023. Determination of *in vitro* biocontrol potentials of antagonist bacterial isolates against onion basal and root rot disease agent *Fusarium proliferatum*. *IJIAAR*. 7(4): 487–497. https://doi.org/10.29329/ijiaar.2023.630.10

- Karim H, Azis AA, & Jumadi O. 2022. Antagonistic activity and characterization of indigenous soil isolates of bacteria and fungi against onion wilt incited by *Fusarium* sp. *Arch. Microbiol.* 204(1): 68. https://doi.org/10.1007/s00203-021-02663-2
- Karuppiah V, He A, Lu Z, Wang X, Li Y, & Chen J. 2022. *Trichoderma asperellum* GDFS1009-mediated maize resistance against *Fusarium graminearum* stalk rot and mycotoxin degradation. *Biol. Control.* 174: 105026. https://doi.org/10.1016/j.biocontrol.2022.105026
- Kaur S, Samota MK, Choudhary M, Choudhary M, Pandey AK, Sharma A, & Thakur J. 2022. How do plants defend themselves against pathogens-biochemical mechanisms and genetic interventions. *Physiol. Mol. Biol. Plants*. 28(2): 485–504. https://doi.org/10.1007/s12298-022-01146-y
- Krestini EH, Rusmawati U, & Susilawati A. 2020. Effectiveness of microbial consortium on growth, yield, and intensity of withered disease (*Fusarium oxysporum* Schelecht) on garlic plants. *BIO Web Conf.* 20: 03009. https://doi.org/10.1051/bioconf/20202003009
- Kumar S, Shukla V, Dubey MK, & Upadhyay RS. 2021. Activation of defense response in common bean against stem rot disease triggered by *Trichoderma erinaceum* and *Trichoderma viride*. *J. Basic Microbiol*. 61(10): 910–922. https://doi.org/10.1002/jobm.202000749
- Le D, Ameye M, De Boevre M, De Saeger S, Audenaert K, & Haesaert G. 2021. Population, virulence, and mycotoxin profile of *Fusarium* spp. associated with basal rot of *Allium* spp. in Vietnam. *Plant Dis.* 105(7): 1942–1950. https://doi.org/10.1094/PDIS-08-20-1850-RE
- Lecomte C, Alabouvette C, Edel-Hermann V, Robert F, & Steinberg C. 2016. Biological control of ornamental plant diseases caused by *Fusarium oxysporum*: A review. *Biol. Control.* 101: 17–30. https://doi.org/10.1016/j. biocontrol.2016.06.004
- Lestiyani A, Wibowo A, Subandiyah S, Gambley C, Ito S, & Harper S. 2014. Identification of *Fusarium* spp., the causal agent of twisted disease of shallot. *Paper presented at the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes*

- (IHC2014). 1128. pp. 155–160. https://doi.org/10.17660/ActaHortic.2016.1128.22
- Li J, Philp J, Li J, Wei Y, Li H, Yang K, Ryder M, Toh R, Zhou Y, Denton MD, Hu J, & Wang Y. 2020. *Trichoderma harzianum* inoculation reduces the incidence of clubroot disease in chinese cabbage by regulating the rhizosphere microbial community. *Microorganisms*. 8(9): 1325. https://doi.org/10.3390/microorganisms8091325
- Li XG, Ding CF, Hua K, Zhang TL, Zhang YN, Zhao L, Yang YR, Liu JG, & Wang XX. 2014. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy. *Soil Biol. Biochem.* 78: 149–159. https://doi.org/10.1016/j.soilbio.2014.07.019
- Liu H, Li T, Li Y, Wang X, & Chen J. 2022. Effects of *Trichoderma atroviride* SG3403 and *Bacillus subtilis* 22 on the biocontrol of wheat head blight. *J. Fungi.* 8(12): 1250. https://doi.org/10.3390/jof8121250
- Lucas P. 2006. Diseases caused by soil-borne pathogens. In: Cooke B, Jones D, & Kaye B (Eds.). *The Epidemiology of Plant Diseases*. pp. 373–386. Dordrecht: Springer. Netherlands. https://doi.org/10.1007/1-4020-4581-6 14
- Madriz-Ordeñana K, Pazarlar S, Jørgensen HJL, Nielsen TK, Zhang Y, Nielsen KL, Hansen LH, & Thordal-Christensen H. 2022. The *Bacillus cereus* strain EC9 primes the plant immune system for superior biocontrol of *Fusarium oxysporum*. *Plants*. 11(5): 687. https://doi.org/10.3390/plants11050687
- Marianah L, Nawangsih AA, Munif A, Giyanto G, & Tondok ET. 2024. Variation in symptoms and morphology of *Fusarium* spp. on shallot associated with basal plate rot disease in Brebes District, Central Java Province, Indonesia. *Biodiversitas*. 25(5): 2198–2208. https://doi.org/10.13057/biodiv/d250538
- Meng T, Wang Q, Abbasi P, & Ma Y. 2019. Deciphering differences in the chemical and microbial characteristics of healthy and *Fusarium* wilt-infected watermelon rhizosphere soils. *Appl. Microbiol. Biotechnol.* 103(3): 1497–1509. https://doi.org/10.1007/s00253-018-9564-6
- Minchev Z, Kostenko O, Soler R, & Pozo MJ. 2021. Microbial consortia for effective biocontrol

- of root and foliar diseases in tomato. Front. Plant Sci. 12: 756368. https://doi.org/10.3389/fpls.2021.756368
- Modrzewska M, Błaszczyk L, Stępień Ł, Urbaniak M, Waśkiewicz A, Yoshinari T, & Bryła M. 2022. *Trichoderma* versus *Fusarium* Inhibition of pathogen growth and mycotoxin biosynthesis. *Molecules*. 27(23): 8146. https://doi.org/10.3390/molecules27238146
- Nofal A, El-Rahman MA, Abdelghany T, & Abd El-Mongy M. 2021. Mycoparasitic nature of Egyptian *Trichoderma* isolates and their impact on suppression Fusarium wilt of tomato. *Egypt. J. Biol. Pest Control.* 31(1): 103. https://doi.org/10.1186/s41938-021-00450-1
- Nunes PSO, Junior GVL, Mascarin GM, Guimarães RA, Medeiros FHV, Arthurs S, & Bettiol W. 2024. Microbial consortia of biological products: Do they have a future?. *Biol. Control*. 188: 105439. https://doi.org/10.1016/j. biocontrol.2024.105439
- Palmieri D, Vitullo D, De Curtis F, & Lima G. 2017. A microbial consortium in the rhizosphere as a new biocontrol approach against fusarium decline of chickpea. *Plant Soil*. 412(1): 425–439. https://doi.org/10.1007/s11104-016-3080-1
- Panchalingam H, Ashfield-Crook N, Naik V, Frenken R, Foster K, Tomlin R, Shapcott A, & Kurtböke Dİ. 2022. Testing the biocontrol ability of a *Trichoderma*-Streptomycetes consortium against *Pyrrhoderma noxium* (Corner) L.W. Zhou and Y.C. Dai in soil. *J. Fungi.* 9(1): 67. https://doi.org/10.3390/jof9010067
- Pazarlar S, Madriz-Ordeñana K, & Thordal-Christensen H. 2022. *Bacillus cereus* EC9 protects tomato against Fusarium wilt through JA/ET-activated immunity. *Front. Plant Sci.* 13: 1090947. https://doi.org/10.3389/fpls.2022.1090947
- Prigigallo MI, Cabanás CGL, Mercado-Blanco J, & Bubici G. 2022. Designing a synthetic microbial community devoted to biological control: The case study of fusarium wilt of banana. *Front. Microbiol.* 13: 967885. https://doi.org/10.3389/fmicb.2022.967885
- Ram RM, Debnath A, Negi S, & Singh HB. 2022. Use of microbial consortia for broad spectrum protection of plant pathogens: Regulatory hurdles, present status and future prospects.

- In: Rakshit A, Meena VS, Abhilash Pc, Sarma Bk, Singh Hb, Fraceto L, Parihar M, Singh AK. *Biopesticides. Volume 2: Advances in Bio-Inoculants.* pp. 319–335. Elsevier. United Kingdom. https://doi.org/10.1016/B978-0-12-823355-9.00017-1
- Ramírez V, Martínez J, Bustillos-Cristales MR, Catañeda-Antonio D, Munive JA, & Baez A. 2022. *Bacillus cereus* MH778713 elicits tomato plant protection against *Fusarium oxysporum. J. Appl. Microbiol.* 132(1): 470–482. https://doi.org/10.1111/jam.15179
- Rao Y, Zeng L, Jiang H, Mei L, & Wang Y. 2022. *Trichoderma atroviride* LZ42 releases volatile organic compounds promoting plant growth and suppressing Fusarium wilt disease in tomato seedlings. *BMC Microbiol*. 22(1): 88. https://doi.org/10.1186/s12866-022-02511-3
- Resti Z, Warnita, & Liswarni Y. 2021. Endophytic bacterial consortia as biocontrol of purple blotch and plant growth promoters of shallots. *IOP Conf. Ser.: Earth Environ. Sci.* 741: 012009. https://doi.org/10.1088/1755-1315/741/1/012009
- Romera FJ, García MJ, Lucena C, Martínez-Medina A, Aparicio MA, Ramos J, Alcántara E, Angulo M, & Pérez-Vicente R. 2019. Induced systemic resistance (ISR) and Fe deficiency responses in dicot plants. *Front. Plant Sci.* 10: 287. https://doi.org/10.3389/fpls.2019.00287
- Rosenzweig N, Tiedje JM, Quensen III JF, Meng Q, & Hao JJ. 2012. Microbial communities associated with potato common scab-suppressive soil determined by pyrosequencing analyses. *Plant Dis.* 96(5): 718–725. https://doi.org/10.1094/PDIS-07-11-0571
- Sari GNP, Pustika AB, Solichah C, Wicaksono D, Widyayanti S, Sudarmaji S, & Yolanda K. 2023. The effect of antagonistic microbial and seed bulb-size on fusarium wilt and yield of shallot. *E3S Web Conf.* 467: 01006. https://doi.org/10.1051/e3sconf/202346701006
- Sarma BK, Yadav SK, Singh S, & Singh HB. 2015. Microbial consortium-mediated plant defense against phytopathogens: Readdressing for enhancing efficacy. *Soil Biol. Biochem.* 87:25–33. https://doi.org/10.1016/j.soilbio.2015.04.001
- Saxena AK, Kumar M, Chakdar H, Anuroopa N, & Bagyaraj DJ. 2020. *Bacillus* species in soil as a

- natural resource for plant health and nutrition. *J. Appl. Microbiol.* 128(6): 1583–1594. https://doi.org/10.1111/jam.14506
- Sharma S, Mandal S, & Cramer CS. 2024. Recent advances in understanding and controlling *Fusarium* diseases of Alliums. *Horticulturae*. 10(5): 527. https://doi.org/10.3390/horticulturae10050527
- Shen Z, Ruan Y, Xue C, Zhong S, Li R, & Shen Q. 2015. Soils naturally suppressive to banana *Fusarium* wilt disease harbor unique bacterial communities. *Plant Soil*. 393(1): 21–33. https://doi.org/10.1007/s11104-015-2474-9
- Shen Z, Wang D, Ruan Y, Xue C, Zhang J, Li R, & Shen Q. 2014. Deep 16S rRNA pyrosequencing reveals a bacterial community associated with banana fusarium wilt disease suppression induced by bio-organic fertilizer application. *PLoS One*. 9(5): e98420. https://doi.org/10.1371/journal.pone.0098420
- Shin JH, Lee HK, Lee SC, & Han YK. 2023. Biological control of *Fusarium oxysporum*, the causal agent of *Fusarium* basal rot in onion by *Bacillus* spp. *Plant Pathol. J.* 39(6): 600–613. https://doi.org/10.5423/PPJ.OA.08.2023.0118
- Nurcahyanti SD & Sholeh MI. 2023. Perkembangan penyakit moler (*Fusarium oxysporum* f.sp. *cepae*) pada sentra produksi bawang merah di Kabupaten Probolinggo. *Berkala Ilmiah Pertanian*. 6(2): 56–62. https://doi.org/10.19184/bip.v6i2.35392
- Stummer BE, Zhang X, Yang H, & Harvey PR. 2022. Co-inoculation of *Trichoderma gamsii* A5MH and *Trichoderma harzianum* TR906 in wheat suppresses in *planta* abundance of the crown rot pathogen *Fusarium pseudograminearum* and impacts the rhizosphere soil fungal microbiome. *Biol. Control.* 165: 104809. https://doi.org/10.1016/j.biocontrol.2021.104809
- Supyani S, Poromarto SH, Supriyadi S, & Hadiwiyono H. 2021. Moler disease of shallot in the last three years at Brebes Central Java: The intensity and resulting yields losses is increasing. *IOP conference series: earth and environmental science*. 810: 012004. https://doi.org/10.1088/1755-1315/810/1/012004
- Sutariati GAK, Khaeruni A, Madiki A, Mudi L, Aco A, Ramadhani SA, Adri RM, & Mantja K. 2021.

- Effectiveness of endo-rhizobacteria as growth promoters and biological control of moler disease in shallots (*Allium ascalonicum* L.). *IOP Conf. Ser.: Earth Environ. Sci.* 681: 012028. https://doi.org/10.1088/1755-1315/681/1/012028
- Sylla J, Alsanius BW, Krüger E, Becker D, & Wohanka W. 2013. *In vitro* compatibility of microbial agents for simultaneous application to control strawberry powdery mildew (*Podosphaera aphanis*). *Crop Prot.* 51: 40–47. https://doi.org/10.1016/j.cropro.2013.04.011
- Taylor A, Vágány V, Jackson AC, Harrison RJ, Rainoni A, & Clarkson JP. 2016. Identification of pathogenicity-related genes in *Fusarium oxysporum* f. sp. *cepae*. *Mol. Plant Pathol*. 17(7): 1032–1047. https://doi.org/10.1111/mpp.12346
- Tirado-Ramírez MA, López-Orona CA, Díaz-Valdés T, Velarde-Félix S, Martínez-Campos AR, Romero-Gómez SJ, & Retes-Manjarrez JE. 2019. First report of basal rot of onion caused by *Fusarium brachygibbosum* in Sinaloa, Mexico. *Plant Dis.* 103(3): 582. https://doi.org/10.1094/PDIS-04-18-0710-PDN
- Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, & Prigent-Combaret C. 2013. Plant growth-promoting rhizobacteria and root system functioning. *Front. Plant Sci.* 4: 356. https://doi.org/10.3389/fpls.2013.00356
- Wibowo A, Santika IA, Syafitri LM, Widiastuti A, Subandiyah S, & Harper S. 2023. Incidence of twisted disease and cultivation practice of shallot

- farmers in Bantul Coastal Area, Yogyakarta, Indonesia. *J. Trop. Plant Pests Dis.* 23(1): 23–30. https://doi.org/10.23960/jhptt.12323-30
- Wong CKF, Saidi NB, Vadamalai G, Teh CY, & Zulperi D. 2019. Effect of bioformulations on the biocontrol efficacy, microbial viability and storage stability of a consortium of biocontrol agents against fusarium wilt of banana. *J. Appl. Microbiol.* 127(2): 544–555. https://doi.org/10.1111/jam.14310
- Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, Cho H, Karaoz U, Loqué D, Bowen BP, Firestone MK, Northen NR, & Brodie EL. 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. *Nat. Microbiol.* 3(4): 470–480. https://doi.org/10.1038/s41564-018-0129-3
- Zhang Y, Tian C, Xiao J, Wei L, Tian Y, & Liang Z. 2020. Soil inoculation of *Trichoderma* asperellum M45a regulates rhizosphere microbes and triggers watermelon resistance to fusarium wilt. *AMB Expr.* 10: 189. https://doi.org/10.1186/s13568-020-01126-z
- Zhao J, Liu J, Liang H, Huang J, Chen Z, Nie Y, Wang C, & Wang Y. 2018. Manipulation of the rhizosphere microbial community through application of a new bio-organic fertilizer improves watermelon quality and health. *PLoS One.* 13(2): e0192967. https://doi.org/10.1371/journal.pone.0192967