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ABSTRACT

Bacterial Leaf Blight (BLB), caused by Xanthomonas oryzae pv. oryzae, is a major threat to global rice production, causing 
yield losses of up to 80%. Accurate assessment of disease severity is essential for developing resistant rice varieties and 
implementing effective management strategies. However, traditional visual observation methods, while widely used, are 
prone to subjectivity and reduced accuracy. This study evaluates the accuracy of image analysis for assessing rice plant 
resistance to BLB. Disease severity was assessed using both visual observation and image analysis, with results quantified 
through the Area Under the Disease Progress Curve (AUDPC) and infection rate calculations. Image analysis outperformed 
visual observation, achieving an accuracy rate above 96%, compared to less than 90% for the latter. The Ciherang variety 
demonstrated greater resistance to BLB, with lower AUDPC and infection rates when assessed using image analysis. 
Conversely, visual observation produced contradictory results, highlighting its limitations. This study concludes that image 
analysis provides a more objective, reproducible, and accurate approach to assessing disease severity, with implications for 
breeding programs and integrated disease management systems. Further research is recommended to validate these methods 
across a broader range of rice genotypes and environmental conditions.
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INTRODUCTION 

Bacterial leaf blight (BLB), caused by the 
bacterium Xanthomonas oryzae pv. oryzae (Xoo), is 
one of the major diseases affecting rice crop production 
worldwide, particularly in Asian countries. This disease 
can lead to significant yield losses, with estimates 
ranging from 15% to as high as 80% under severe 
conditions (My, 2024; Lestari, 2023; Bae et al., 2018). 
The impact of BLB on rice production is profound, as 
it not only reduces the quantity of the harvest but also 
affects the quality of the grains, thereby threatening 
food security for millions of people who depend 
on rice as a staple food (Jiang et al., 2020; Long et 
al., 2023). The disease primarily manifests through 
leaf wilting and necrosis, which can severely impair 
photosynthesis and overall plant health. The pathogen 
enters the rice plant through hydathodes at the leaf 
margins or through wounds, proliferating within the 
xylem and leading to systemic infection (Jiang et al., 

2022). 
Various studies have focused on developing 

strategies to control BLB, including the development 
of inhibitors against Xoo (Jiang et al., 2019), the 
application of organic fertilizers combined with Xoo-
controlling microbes (Rifki et al., 2018), and the long-
term effects of niclosamide use to inhibit BLB (Kim 
et al., 2016). Other efforts include the identification 
of resistant genes in rice cultivars using SSR markers 
(Acharya et al., 2018), and the screening of BLB-
resistant rice genotypes (Nihad et al., 2021). According 
to Kim & Reinke (2019), evaluating plant resistance to 
BLB in the early breeding stages is vital for developing 
resistant varieties.

An essential component of BLB disease 
management in the field is monitoring and assessing 
disease severity. This step is crucial to determine 
whether the implemented control measures are 
effective in reducing disease intensity. Monitoring 
disease severity enables farmers and agronomists to 
make informed decisions regarding the continuation 
or modification of management strategies (My, 
2024; Lestari, 2023). Regular assessments also allow 
early detection of outbreaks, facilitating timely 
interventions that prevent further spread and minimize 
yield losses. This proactive approach is particularly 
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important, as BLB can escalate rapidly under favorable 
environmental conditions (Bae et al., 2018; Jiang et al., 
2020). Systematic monitoring generates valuable data 
for research purposes and supports the development of 
more effective control measures and resistant varieties. 
It also informs future breeding programs aimed at 
enhancing resistance to BLB (Long et al., 2023; Jiang 
et al., 2022). 

Several methodologies are employed to monitor 
and assess BLB severity in rice fields. One of the most 
widely used methods is visual observation or scoring, 
in which disease severity is determined based on 
the percentage of leaf area affected by lesions. This 
approach often relies on standardized scales such as the 
Standard Evaluation System (SES) for rice, providing 
a uniform framework for quantifying disease impact 
(Haidary et al., 2018; Acharya et al., 2018). The 
conventional approach, involving field-based visual 
observation and calculation of the Area Under the 
Disease Progress Curve (AUDPC), is commonly used 
to assess crop resistance to BLB (Jirankali et al., 2023). 
However,  subjectivity and low accuracy —often 
influenced by the observer’s skill and environmental 
conditions—remain major limitations (Hassan et al., 
2023; Vettori & Rice, 2020). Despite these drawbacks, 
visual observation remains the primary method for 
many practitioners due to its ease of use (Bock et al., 
2021). 

To overcome these limitations, researchers 
increasingly adopt “quantitative measurements” 
using advanced techniques such as image analysis 
and remote sensing. These approaches allow more 
precise assessments by generating spatial data on 
disease distribution, offering deeper insights into 
disease progression and dynamics (Shi et al., 2021; 
Nanayakkara et al., 2020).

The novelty of this research lies in the application 
of digital image analysis technology to enhance the 
accuracy of assessing plant resistance to BLB. Unlike 
traditional visual observation, digital image analysis 
provides a more objective and precise approach, 
offering several key advantages: 1) Objectivity and 
precision: Digital image analysis eliminates the 
subjectivity of human observation by providing 
objective measurements of disease symptoms. It 
quantifies severity using specific parameters such as 
lesion area or color changes, which are more reliable 
than subjective ratings (Long et al., 2023; Jiang et al., 
2022; Haidary et al., 2018); 2) High throughput: Digital 
imaging enables the rapid evaluation of large plant 
populations, making high-throughput phenotyping 
feasible—particularly beneficial for breeding programs 

that assess numerous genotypes (Acharya et al., 2018); 
3)  Non-destructive assessment: This method allows 
non-invasive monitoring of living plants, ideal for 
studies that require continuous observation of plant 
development (Zhang et al., 2018).

Despite these advancements, Barbedo (2013) 
notes that the effectiveness of disease detection 
through digital images can be limited when symptoms 
are subtle or overlap with other physiological changes 
in the plant, potentially leading to misdiagnosis or 
oversight.

Digital image analysis has been successfully 
applied in various studies to evaluate resistance to 
BLB and other diseases. For example, image analysis 
methods have been used to estimate disease severity 
in rice varieties affected by blight and spot diseases 
(Bande & Hasan, 2024). Automated Disease Severity 
Assessment systems that utilize digital imaging have 
been developed to quantify lesion size and color 
intensity, offering detailed insights into plant health 
(Goriewa-Duba et al., 2018). Furthermore, integrating 
image analysis with machine learning has demonstrated 
potential for enhancing disease assessment accuracy. 
Machine learning algorithms can detect patterns in 
images, enabling more sophisticated analyses of plant 
resistance (Askey et al., 2019).  

However, there is currently no study that 
explicitly compares the accuracy of visual observation 
and image analysis methods in assessing rice plant 
resistance to BLB in field conditions and their 
implications. Therefore, this research aims to validate 
the accuracy of visual observation compared to image 
analysis and to evaluate its implications for BLB 
disease control strategies.

This research is expected to make a significant 
contribution to the field of crop protection by 
providing a more accurate method for resistance 
assessment. It can be applied in breeding programs to 
develop BLB-resistance assessment. It can be applied 
in breeding programs to develop BLB-resistant rice 
varieties, thereby contributing to global food security 
through improved crop protection and higher yields. 
Furthermore, the developed method may be integrated 
into agricultural insurance systems to provide more 
precise and fair crop damage assessments (Hongo et 
al., 2022). 

MATERIALS AND METHODS

Research Site. Surveys and image recording were 
conducted on rice varieties Inpari 32 (3°46’56.9 
“S 122°02’18.2 “E) and Ciherang (3°47’10.8 “S 
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122°01’40.7 “E) as test plants (105 days after 
planting). Both varieties were cultivated by farmers in 
adjacent areas in Puundombi Village, North Tongauna 
Subdistrict, Konawe District, Southeast Sulawesi 
Province, Indonesia. Confirmation of the causal agent 
of the disease in rice plants was carried out in the 
Laboratory of the Department of Plant Protection, 
Faculty of Agriculture, Halu Oleo University. All 
stages of the research were conducted from April to 
June 2024.

Determination of Plant Leaf Samples. Sampling 
location were determined using the purposive sampling 
method, with the criterion that visible symptoms of 
BLB were present on the plant leaves. Subsequently, 
five observation plots were determined using the 
diagonal sampling method. In each plot, four leaves 
exhibiting BLB symptoms were selected, each from a 
different rice clump, totaling 20 symptomatic leaves 
per variety. Efforts were made to ensure that sampled 
leaves showed no disease symptoms other than BLB 
(confirmed through laboratory testing) to avoid bias 
during image analysis.

Confirmation of the Cause of Blight. This stage began 
with the preparation of infected rice leaf slices (from the 
border area between diseased and healthy tissue), each 
measuring 0.5 cm × 0.5 cm. The slices were surface-
sterilized using 70% ethanol for 5 min and rinsed twice 
with sterile distilled water. The sterilized slices were 
then chopped with a sterile knife, and two drops of 
sterile distilled water were added before incubating for 
5 min. The supernatant, containing bacterial cells, was 
spread on PSA medium (potato 30 g, sucrose 20 g, and 
agar 20 g per L) and incubated for 3–4 days. Bacterial 
colonies with round, mucoid, yellow characteristics 
(typical of Xoo) (Khaeruni & Wijayanto, 2013), were 
then Gram-stained (Rachmawati et al., 2017) and 
observed under a Leica DM500 microscope (Leica 
Microsystems, Germany) at 400× magnification.

Plant Leaf Image Recording and Environmental 
Relative Humidity Measurement. Image recording 
of BLB-symptomatic leaves was carried out starting at 
08:00 AM UTC+8 under clear sky conditions. Leaves 
were exposed to direct sunlight to clearly capture 
BLB symptoms. A smartphone camera (Realme C35) 
mounted on a tripod, approximately 15 cm away 
from the leaf, was used for image capture. A white 
background was placed behind the leaf to aid image 
analysis, along with a 30 cm scale bar for calibration. 
Image recording was conducted every other day for a 

week (days 1, 3, 5, and 7) on the same leaf samples. 
Environmental relative humidity was measured before 
each image capture using an HTC-1 digital hygrometer 
(Aptechdeals, China).

Image Analysis of BLB-Symptomatic Leaves. The 
analysis consisted of three main steps: (1) Calibration 
– RGB images of symptomatic leaves were calibrated 
(from pixels to centimeters) to enable measurement of 
diseased and healthy areas. The RGB image was then 
converted to the CIELAB color space (Lab*), resulting in 
three separate images: L*, a*, and b*; (2) Segmentation 
– The a* image was used for segmentation, as it best 
distinguished between diseased and healthy leaf areas; 
(3) Estimation of disease severity – A binary image 
(black and white) resulting from segmentation was 
used to estimate disease severity. All image analysis 
steps were conducted using the Fiji-ImageJ software 
(ImageJ 1.54g) (Schindelin et al., 2012).

Assessment of BLB Disease Severity, Disease 
Infection Rate, AUDPC, and Plant Resistance. Two 
methods were used to assess disease severity: visual 
observation and image analysis. In visual observation, 
BLB symptoms were scored and the disease severity 
percentage was calculated using the following formula 
(Soesanto et al., 2024):

DS
Z N

(v n )
100%

i i

#

#
#= ; E/

DS	= Disease severity (%); 
vi	 = Leaf damage score;
ni	 = Number of leaves with the same damage score;
Z	 = Highest damage score;
N	 = Total number of leaves observed.

Scoring was based on Seshu (1989), with slight 
modifications: 1–5% damage (score 1), 6–12% (score 
3), 13–25% (score 5), 26–50% (score 7), and 51–100% 
(score 9).

Assessment of disease severity through image 
analysis is carried out on binary images as the final 
result of the final stage of image analysis using the 
following formula (modified) (Rodrigues et al., 2019).

DS
Total leaf area (cm )

Leaf area with blight (cm )
100%2

2

#=

In image-based assessment, binary images were 
used to calculate disease severity (modified from 
Rodrigues et al., 2019). White areas in the binary 
image represented diseased tissue, while black areas 
represented healthy tissue (Figures 4C1 and 4C2). The 
total leaf area was the sum of diseased and healthy 
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areas, calculated using the Analyze Particle plugin in 
Fiji-ImageJ.

BLB disease infection rate was calculated using 
Van der Plank (1963) formula:

r t
e
log
1 X
X

log
1 X
X

t

t

o

o= - - -b l
r	 = Infection rate; 
e	 = Conversion number (2.718);
t	 = Observation time interval (days); 
Xt	 = Proportion of diseased leaves at time t (%); 
X0	 = Proportion of diseased leaves at the beginning of 
         observation (%).

Plant resistance to BLB was further assessed 
by calculating the AUDPC (Area Under the Disease 
Progress Curve) using the following formula (Madden 
et al., 2017):
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n	 = Number of observations;
yi	 = Disease severity at the initial observation;
yi+1	= Disease severity at the next observation; 
ti	 = initial observation time;
ti+1	 = Next observation time. 

A lower AUDPC value indicates greater plant 
resistance to disease (Madden et al., 2017).

Accuracy of Disease Severity Assessment Method. 
The accuracy of the disease severity assessment was  
evaluated using the coefficient of determination (R²)  
(Hasan et al., 2021).

Data analysis. All research data were tabulated and 
analyzed using descriptive statistics and correlation 
analysis with the Microsoft Excel (Microsoft Office 
Home and Student 2021).

RESULTS AND DISCUSSION

Bacterial leaf blight (BLB) in rice, caused by 
Xanthomonas oryzae pv. oryzae (Xoo), is a major 
disease affecting rice production worldwide. In this 
study, we successfully confirmed the presence of Xoo 
as the causative agent of blight in the rice varieties 
Inpari 32 and Ciherang, based on laboratory analyses 
(Figure 1). The identification of Xoo was consistent 
with the findings of Rachmawati et al. (2017), who 
described the bacteria as forming round, shiny, slimy, 
pale-yellow colonies. Additionally, Gram staining 
and microscopic observations confirmed that Xoo is 

a Gram-negative, rod-shaped (bacillus) bacterium. 
These characteristics were crucial in verifying the 
pathogen responsible for the observed symptoms in the 
sampled rice plants.

Monitoring disease progression caused by the 
Xoo pathogen is crucial for developing effective control 
strategies. Two common approaches for evaluating the 
severity of plant diseases include visual observation 
and image analysis, both of which serve as a basis for 
assessing plant resistance levels. Visual observation 
relies on the direct assessment of disease symptoms, 
typically based on visible changes in the leaves. In 
the case of bacterial blight, initial symptoms appear 
as grayish-green stripes along the leaf edges, which 
progressively extend toward the base. As the disease 
advances, the leaves turn yellow, develop a straw-like 
appearance, and dry at the tips. These visible symptoms 
form the basis for determining disease severity in the 
field (Figure 2). 

In contrast, image analysis employs digital 
technology to objectively and consistently detect 
and quantify disease symptoms. This method offers 
significant advantages by minimizing observer 
bias. The results of digital image analysis are highly 
reproducible, as illustrated in Figure 3. For example, 
visual assessments of blight-symptomatic leaves from 
Inpari 32 and Ciherang yielded severity values of 
50% and 49%, respectively, whereas image analysis 
indicated a uniform severity of 100%.

The percentage of disease severity based on 
visual observation often differs from that derived from 
image analysis (Figure 4). This discrepancy may be 
due to the inherent difficulty observers face in precisely 
distinguishing between healthy and diseased leaf 
areas. Visual evaluations are subjective and influenced 
by factors such as lighting, observer experience, and 
leaf texture. In contrast, image analysis provides a 
more objective and consistent assessment, clearly 
distinguishing between diseased (white areas in Figure 
4C1) and healthy (black areas in Figure 4C2) tissues. 
However, some leaf regions appear grayish or nearly 
white (Figure 4B), indicating transitional zones that 
may become diseased over time. Until these areas fully 
progress and the color shifts to yellow-straw, image 
analysis may still classify them as healthy.

Both visual observation and image analysis in 
this study showed that BLB severity increased over 
time in both rice varieties, as reflected in the rising 
average severity at each observation point (Figures 5 
and 6). However, data analysis confirmed that image-
based assessments were significantly more accurate 
than visual observations (Figure 6). This is evident 
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from the higher coefficient of determination (R² > 96%) 
achieved through image analysis, compared to lower 
R² values (< 90%) from visual assessments (Figure 5). 
These findings suggest that image analysis is a more 
reliable method for estimating disease progression, 
offering a closer approximation of actual severity than 
traditional visual observation.

Accurate assessment of disease severity is 
crucial for evaluating plant resistance. However, 
visual observations often result in inaccuracies that 
can compromise this evaluation. Such errors may lead 
to the exclusion of genuinely resistant plants and the 
selection of susceptible ones, undermining breeding 
programs aimed at improving disease resistance 
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Figure 1. Visualization of bacterial colonies on artificial media isolated from blight-symptomatic Inpari 32 
and Ciherang rice leaves, along with microscopic observation (400× magnification) following Gram 
staining.

Day 1 Day 3 Day 5 Day 7

Figure 2. RGB images of rice leaf samples showing the progression of blight symptoms, observed every two days 
over the course of one week.

% DS=

Inpari 32 Ciherang

50% 49%100% 100%
Figure 3. Images of blight-symptomatic rice leaf samples from the Inpari 32 and Ciherang varieties. Examples of 

disease severity (DS) assessment results are shown based on visual observation (visualized with RGB 
images) and image analysis (visualized by grayscale images).
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(Méline et al., 2023). The subjectivity of human scorers 
introduces variability that hampers the identification 

of resistance genes and complicates the development 
of resistant cultivars (Bock et al., 2010). Additionally, 

% DS Visual observation=2% (Score 1) % DS Visual observation=10% (Score 3)
% DS Image analysis=5.21% % DS Image analysis=54.62%

A AB BC1 C1
C2 C2

Figure 4. Images of rice leaf samples with blight symptoms. A. RGB image; B. Grayscale image; C1–C2. Binary 
(black-and-white) image, where C1 = represents the diseased leaf area and C2 represents the healthy leaf 
area; DS = disease severity.
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Figure 5. AUDPC value, coefficient of determination, and average percentage of BLB disease severity based on 
visual observation in the Inpari 32 and Ciherang varieties.
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Figure 6. AUDPC value, coefficient of determination, and average percentage of BLB disease severity based on 

image analysis in Inpari 32 and Ciherang varieties.



 Gusnawaty et al.                			                        Visual observation and image analysis method of blight disease          281 	

flawed assessments can result in inappropriate disease 
management practices, potentially exacerbating 
disease spread and causing significant crop losses. 
These inaccuracies may also have serious economic 
consequences, as crops incorrectly classified as 
resistant may fail to meet yield expectations (Bock 
et al., 2021). Furthermore, misallocated resources—
such as time, labor, and capital—may be wasted 
on ineffective control strategies. Conversely, the 
adoption of disease-resistant varieties can reduce the 
need for chemical inputs, promoting more sustainable 
agriculture (Zander et al., 2023; Mooney et al., 2022). 
Therefore, improving resistance assessment accuracy 
is vital not only for yield optimization but also for 
efficient resource use and environmental sustainability.

Based on disease severity measurements, 
Inpari 32 exhibited a consistently higher rate of BLB 
infection than Ciherang. Using image analysis, the 
infection rate for Inpari 32 reached 1.089 units per day, 
while visual observation recorded 0.818 units per day 
(Table 1). This difference suggests that Inpari 32 may 
be more susceptible to BLB, possibly due to genetic or 
physiological differences in response to the pathogen. 
Agronomically, the lower resistance of Inpari 32 raises 
concerns about its field resilience. Such varieties may 
require enhanced management strategies, including 
chemical treatments or more robust protective 
measures, to mitigate yield losses.

The observed differences between measurement 
techniques also underscore the importance of method 
selection. Image analysis, which detected a higher 
infection rate in Inpari 32, can identify subtle or early-
stage infections that might be overlooked during visual 
inspections. In the case of Ciherang, however, visual 
observation recorded a slightly higher infection rate 
(0.512 units/day) compared to image analysis (0.446 
units/day). This variation may stem from human error 
or subjective interpretation, which can lead to over- or 
underestimation. These findings highlight the critical 
role of method selection in disease measurement. 
While image analysis offers objectivity and precision, 
especially for subtle symptoms, visual methods remain 
practical for field use, though they carry potential 
biases.

Subsequently, AUDPC (Area Under the Disease 

Progress Curve) values derived from image analysis 
showed a clear difference in resistance between the two 
rice varieties. Ciherang exhibited greater resistance 
to BLB, as indicated by its lower AUDPC value 
(252.68%-day) compared to Inpari 32 (264.16%-day) 
(Figure 6). This supports findings by Suryaningsih et al. 
(2023), who reported that Ciherang is highly resistant 
to BLB, while Yuliani & Sudir (2022) classified Inpari 
32 as resistant. Interestingly, visual observations 
showed a slightly different result, suggesting that 
Inpari 32 appeared more resistant than Ciherang based 
on AUDPC values (326.67%-day and 330.00%-day, 
respectively) (Figure 5). This further reinforces the 
idea that inaccurate assessments can negatively affect 
resistance classification. As explained by Febriyanto et 
al. (2022), AUDPC is widely used in plant pathology 
to measure disease development over time and assess 
plant resistance. Lower AUDPC values indicate higher 
resistance, while higher values suggest susceptibility. 
This is because more resistant plants slow disease 
development, resulting in a flatter disease curve and 
lower AUDPC. In contrast, susceptible plants show 
rapid progression and steeper disease curves, leading 
to higher AUDPC values (Madden et al., 2017).

Several factors may contribute to differences 
in plant resistance to BLB infection. The presence 
of specific resistance genes is a critical defense 
mechanism. Research has shown that both quantitative 
trait loci (QTLs) and resistance (R) genes play 
important roles in disease resistance. Notable 
resistance genes such as Xa7, Xa10, and Xa23 enhance 
rice defenses by recognizing pathogen-associated 
molecular patterns and triggering immune responses. 
Identification of QTLs across multiple chromosomes 
also emphasizes the importance of genetic diversity 
in breeding programs (Liu et al., 2024). Additionally, 
pathogen virulence factors significantly influence the 
interaction between pathogen and host. Highly virulent 
pathogens may overcome plant defenses through 
enhanced infection efficiency, shorter latency periods, 
and increased sporulation (Fontyn et al., 2023). Some 
pathogens even neutralize antimicrobial peptides 
produced by plants through specialized virulence 
mechanisms (Farvardin et al., 2024). Understanding 
these factors is crucial for developing more resilient 

Measurement methods
BLB disease infection rate (r) in rice variety (units per day)

Inpari 32 Ciherang
Image analysis 1.089 0.446

Visual observation 0.818 0.512

Table 1. Infection rates of bacterial leaf blight in the Inpari 32 and Ciherang rice varieties based on image analysis 
and visual observation
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disease control measures. Advanced technologies—
such as image analysis and/or remote sensing—
should be integrated into these strategies to enhance 
early detection and intervention, thereby reducing the 
overall impact of disease outbreaks on crop yield and 
food security.

Scientifically, this study contributes to 
developing more accurate and efficient methods for 
monitoring crop disease resistance. Image analysis 
can enhance data quality, allowing for deeper analysis 
and better decision-making in disease management. 
Practically, this technology can be adopted by farmers 
and agronomists to monitor disease development 
and reduce losses. For instance, smartphone-based 
applications can help measure disease symptoms in the 
field.

Despite its contributions, this study has some 
limitations. First, only two rice varieties were evaluated, 
limiting the generalization of findings to a broader 
genetic background. Second, varying environmental 
conditions can affect the results, indicating the need 
for further research across diverse field conditions. 

CONCLUSION

Accurate assessment of bacterial leaf blight 
(BLB) severity is essential for effective disease 
management. This study shows that image analysis is 
more reliable and objective than visual observation, 
with over 96% accuracy. It eliminates subjective bias 
and improves reproducibility. Based on image analysis, 
Ciherang demonstrated greater resistance to BLB than 
Inpari 32, with lower infection rates and AUDPC 
values. In contrast, visual assessments produced 
inconsistent results, highlighting their limitations. 
Image analysis offers valuable support for breeding 
programs and crop insurance systems. However, further 
research involving more rice varieties and diverse field 
conditions is needed to broaden these findings.
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crop varieties.
Environmental conditions also play a vital 

role in disease development and spread. Recent 
studies have highlighted the influence of humidity, 
temperature, and soil factors on BLB severity. For 
instance, spatial analysis in Pakistani rice fields showed 
strong correlations between environmental variables 
and BLB outbreaks (Ahmad et al., 2023). Similarly, 
studies have linked high relative humidity to increased 
severity of sheath blight, suggesting similar effects 
on BLB (Naveenkumar et al., 2022). High humidity 
combined with elevated temperatures during critical 
growth stages has also been linked to increased disease 
incidence (Iqbal et al., 2022).

The strong correlation between environmental 
humidity and disease severity in the Inpari 32 and 
Ciherang rice varieties—regardless of the measurement 
method—reinforces findings that humidity is one of 
the key factors influencing plant disease progression, 
particularly during critical growth stages (Table 
2). In this study, Inpari 32 demonstrated a slightly 
higher correlation, suggesting that this variety is more 
susceptible to fluctuations in environmental humidity. 
Elevated humidity levels create optimal conditions for 
pathogen proliferation, as pathogens generally thrive 
in moist environments. Consequently, in humidity-
sensitive varieties like Inpari 32, the risk of disease 
intensifies when plants are exposed to high humidity 
during essential growth phases, as noted by Iqbal et al. 
(2022).

In contrast, although Ciherang also exhibited 
a strong correlation between humidity and disease 
severity, its slightly lower correlation value may 
indicate greater resilience to humidity variations or 
reduced sensitivity to environmental fluctuations. 
Despite this relative tolerance, Ciherang remains 
vulnerable to disease outbreaks under high-humidity 
conditions. 

These findings underscore the critical 
importance of integrated disease management systems 
that incorporate real-time monitoring of environmental 
variables to mitigate the risk of BLB and other 
humidity-related diseases. By adopting proactive 
management strategies that account for environmental 
dynamics, rice cultivation can significantly improve its 

Inpari 32 Ciherang
Image analysis 0.958 0.948

Visual observation 0.983 0.981

Tabel 2. Correlation values (*) between environmental relative humidity (%) and disease severity (%) in the 
Inpari 32 and Ciherang rice varieties, measured using image analysis and visual observation methods

* = Pearson correlation
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