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ABSTRACT

Rhizoctonia solani Kühn is a pathogenic fungus that causes sheath blight disease in rice. One effective strategy for managing 
this disease is the use of biological control, particularly through consortia of endophytic bacteria. This study aimed to identify 
the most effective endophytic bacterial consortium for suppressing sheath blight severity while also enhancing rice growth 
and yield. A Completely Randomized Design (CRD) was aemployed with six treatments, three replications, and three 
experimental units per treatment. The treatments included four bacterial consortia composed of combinations of Bacillus 
thuringiensis LmD13, Ochrobactrum intermedium LmB1, and Stenotrophomonas maltophilia LmB35, along with positive 
and negative controls. The experiment involved treating rice seeds and soaking seedling roots with the bacterial consortia 
before transplanting. R. solani was inoculated onto the rice leaf sheaths 40 days after planting. The effectiveness of each 
consortium as a biocontrol agent was evaluated based on incubation period, disease incidence, disease severity, and the area 
under the disease progress curve (AUDPC). Their biostimulant potential was assessed through parameters related to seedling 
growth, plant development, and yield. Results indicated that the endophytic bacterial consortia effectively suppressed 
sheath blight and significantly improved rice growth and production. Notably, the consortium of B. thuringiensis LmD13, 
O. intermedium LmB1, and S. maltophilia LmB35 extended the incubation period to 35 days post-inoculation and reduced 
disease incidence, severity, and AUDPC to 22.22%, 0.29%, and 1.01, respectively. This consortium also enhanced rice yield, 
with fresh and dry grain weights reaching 72.78 g and 63.02 g, respectively, compared to the positive control. These findings 
suggest that this bacterial consortium holds strong potential as a biocontrol agent and yield enhancer in rice cultivation.
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INTRODUCTION 

Oryza sativa is a vital staple food crop in Asia, 
Africa, and Latin America. As the primary source of 
rice (Fukagawa & Ziska, 2019), its demand continues 
to grow in line with population increases (Sen et al., 
2020). In Indonesia, rice  availability is a crucial 
determinant of food security and national stability 
(Sandy et al., 2019). However, rice cultivation faces 
persistent threats from various pests and diseases 
that reduce yield and quality. Major pathogens 
affecting rice include rice tungro virus (Sutrawati et 
al., 2021), rice grassy stunt virus (Wu et al., 2023), 
Xanthomonas oryzae pv. oryzae (Ke et al., 2017; Oliva 
et al., 2019), Pyricularia oryzae (Motoyama, 2020), 

Helminthosporium oryzae (Sattari et al., 2015; Ashfaq 
et al., 2021), and Rhizoctonia solani Kühn (Rao et al., 
2020; Senapati et al., 2022),  which cause leaf blight, 
blast, leaf spot, and sheath blight, respectively. 

Among these, sheath blight is considered 
one of the most destructive diseases affecting rice 
worldwide. It ranks second only to rice blast in terms 
of annual global yield losses. In Asia alone, sheath 
blight is estimated to reduce rice production by an 
average of 6%, with local losses reaching up to 50% 
(Singh et al. 2019). The disease also contributes 
to significant economic losses globally (Molla et 
al., 2020). In Indonesia, Milati & Nuryanto (2019) 
reported sheath blight severity ranging from 6% to 
52%. Effective management is challenging due to the 
high genetic variability of R. solani, a soil- and seed-
borne facultative parasite capable of surviving on crop 
residues as sclerotia or mycelium, acting as primary 
inoculum in the field (Sivalingam et al., 2006; Basu et 
al., 2016; Desvani et al., 2018; Senapati et al., 2022). 
Efforts to develop resistant rice varieties have been 
constrained by the limited availability of resistance 
genes in the existing germplasm (Singh et al., 2019). 
In addition, conventional control measures such as 
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cultural practices and chemical fungicides are often 
ineffective in the long term and raise concerns about 
environmental and health impacts due to the excessive 
use of synthetic compounds (Suryadi et al., 2015). 

To address these challenges, sustainable and 
eco-friendly control strategies are essential. One 
promising approach involves the utilization of 
beneficial microorganisms associated with rice plants, 
particularly endophytic bacteria. These plant growth-
promoting bacteria (PGPB) live within plant tissues 
without causing disease symptoms (Olanrewaju et 
al., 2017; Morales-Cedeño et al., 2021). Several 
genera of endophytic bacteria isolated from rice—
such as Pseudomonas, Bacillus, Enterobacter, 
Alcaligenes, Arthrobacter, Azospirillum, Azotobacter, 
Burkholderia, Klebsiella, Rhizobium, and Serratia —
have demonstrated growth-promoting capabilities in 
vitro (Sharma et al., 2012; Santoyo et al., 2016; Prasad 
et al., 2019; Morales-Cedeño et al., 2021). 

Endophytic bacteria promote plant growth 
through direct and indirect mechanisms (Jeyanthi 
& Kanimozhi, 2018; Ullah et al., 2019). Direct 
mechanisms include nitrogen fixation, mineral 
solubilization (e.g. phosphorus and iron), siderophore 
production, and phytohormone synthesis (Whipps, 
2001; Rahma et al., 2024; Yuniawati & Akhdiya, 2021; 
Katsenios et al., 2022). Indirect mechanisms involve the 
suppression of pathogens through antibiotic production 
and the induction of systemic resistance (ISR) in plants 
(Hallmann, 2001; Van Loon, 2007; Tiwari et al., 2017; 
Solanki et al., 2019). Rahma et al. (2022) identified 
endophytic strains such as Ochrobactrum  intermedium 
LmB1, Bacillus cereus LmA6, and Stenotrophomonas 
maltophilia LmB35 that enhanced rice growth and 
suppressed bacterial leaf blight caused by X. oryzae 
pv. oryzae. 

Moreover, endophytic bacteria often interact 
with other microorganisms, forming complex microbial 
communities that may exert synergistic, neutral, or 
antagonistic effects on the host plant (Mendes et al., 
2011; Carrión et al., 2019). Bacterial consortia, defined 
as combinations of two or more compatible microbial 
species, can provide enhanced disease suppression 
through mechanisms such as resource competition, 
antibiotic production, and multi-pathway activation of 
plant defenses (Stockwell et al., 2011; Panwar et al., 
2014; Sarma et al., 2015; Ju et al., 2019; Singh et al., 
2023). 

highlighted that microbial consortia are often 
more effective than single isolates in managing plant 
diseases. Endophytic bacterial consortia have been 
reported to control a variety of plant pathogens. For 

instance, Halimah et al. (2016) showed that endophytic 
bacteria caused up to 65.8% mortality of the nematode 
Oratylenchus coffeae in vitro. Demonstrated that a 
consortium of Bacillus sp. SJI and S. marcescens strain 
JB1E3, alone or in combination with Bacillus sp. HI, 
effectively suppressed Ralstonia solanacearum while 
enhancing chili plant growth. Similarly, Yanti et al. 
(2020) found that a consortium of B. pseudomycoides 
SLBE 3.1AP, B. thuringiensis AGBE 2.1TL, and 
B. cereus SLBE 1.1SN suppressed Colletotrichum 
gloeosporioides infection in chili by up to 95%.

Despite the promising potential of endophytic 
bacterial consortia, their effectiveness against sheath 
blight in rice has not been adequately explored. 
Therefore, this study aims to identify the most effective 
endophytic bacterial consortium for suppressing sheath 
blight caused by R. solani and promoting rice plant 
growth.

MATERIALS AND METHODS

Research Site. This research was conducted at the 
Microbiology Laboratory and Experimental Field, 
Faculty of Agriculture, Andalas University, from April 
to September 2023.

Research Design. This study employed a Completely 
Randomized Design (CRD) with six treatments, three 
replications, and three units per replication. The study 
utilized endophytic bacterial isolates and a pathogenic 
fungal isolate (Rhizoctonia solani RSLB2), all obtained 
from the Microbiology Laboratory, Department of 
Plant Protection, Faculty of Agriculture, Andalas 
University. The endophytic bacterial isolates used were 
B. thuringiensis LmD13, O. intermedium LmB1, and 
S. maltophilia LmB35—originally isolated from the 
leaves and stems of rice plants and selected as potential 
biocontrol agents against X. oryzae pv. oryzae (Rahma 
et al., 2022). The treatment combinations used in this 
study are presented in Table 1.

Rejuvenation and Pathogenicity Test of R. Solani 
Isolate RSLB2. The R. solani RSLB2 isolate was 
revived from stock cultures and cultured on Potato 
Dextrose Agar (PDA; Merck, Germany). The fungal 
cultures were incubated for seven days to obtain active 
mycelial growth for further use.

Rejuvenation and Compatibility Testing of 
Endophytic Bacteria. Endophytic bacterial isolates 
stored in 20% glycerol were revived by streaking 
onto Nutrient Agar (NA; Merck, Germany) using the 
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quadrant method and incubated at room temperature 
for 48 hours. Compatibility between bacterial isolates 
was tested using the cross-streak method on NA. 
Two isolates were streaked perpendicularly, and 
compatibility was determined by the absence of a 
clear zone at the intersection (Denaya et al., 2021), 
The presence of a clear zone indicated incompatibility 
(Figure 1).

Preparation of Endophytic Bacterial Consortia. 
Consortia were prepared in two stages. First, each 
isolate was cultured in 25 mL of Nutrient Broth (NB; 
Merck, Germany) and incubated on a rotary shaker at 
150 rpm for 24 hours. In the second stage, 1 mL of each 
compatible isolate (at 108 CFU/mL) was combined 
and introduced into 49 mL of sterile nutrient-enriched 
coconut water (Rahma et al., 2019). This mixture 
was incubated for 48 hours on a shaker at 150 rpm at 
room temperature. Bacterial density was confirmed by 
comparing turbidity with McFarland standard 8 (≈ 108 
CFU/mL) (Klement et al., 1990).

Evaluation of the Consortium’s Potential to 
Suppress Sheath Blight and Promote Rice Growth.
Preparation of Planting Media. The planting medium  
consisted of soil and manure mixed at a 2:1 ratio. 
The mixture was sterilized using the Tyndallization 
method and placed into sprout trays and 5-kg capacity 
polybags. 

Inoculation of Endophytic Bacterial Consortia. Rice 
seeds of the IR-42 variety were surface-sterilized in 
2% NaOCl for 1 min, rinsed with sterile distilled water, 
air-dried and soaked in each consortium suspension 
(108 CFU/mL) for 1 hour on a rotary shaker at 150 
rpm. Control seeds were soaked in sterile water. The 
seeds were then air-dried and sown in sterile soil media 
for 21 days (Rahma et al., 2022).  

For root inoculation, seedlings were gently 
washed, and root were immersed in the bacterial 
suspension (108 CFU/mL) for 15 min. Control were 
treated similarly with sterile distilled water. Each 
seedling was transplanted into a polybag containing 

Figure 1. Compatibility test of endophytic bacterial isolates on Nutrient Agar (NA) medium. A. B. thuringiensis 
LmD13 + O. intermedium LmB1; B. B. thuringiensis LmD13 + S. maltophilia LmB35; C. O. intermedium 
LmB1+ S. maltophilia LmB35; D. B. thuringiensis LmD13 + O. intermedium LmB1 + S. maltophilia 
LmB35. The arrows indicate the points where the bacterial streaks intersect. The lack of a distinct zone 
at these locations indicates that the isolates do not inhibit one another and are suitable for consortium 
formation.

A B

C D

Table 1. The treatment combinations 

Code Treatment description
A B. thuringiensis LmD13 + O. intermedium LmB1
B B. thuringiensis LmD13 + S. maltophilia LmB35
C O. intermedium LmB1 + S. maltophilia LmB35
D B. thuringiensis LmD13 + O. intermedium LmB1 + S. maltophilia LmB35
E Negative control (without consortium, inoculated with R. solani) 
F Positive control (without consortium, not inoculated with R. solani)
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sterile planting media (soil:manure = 2:1) and covered 
with plastic (Khaeruni et al., 2014). 

Inoculation of R. solani and Disease Assessments. 
Inoculation of R. solani was done by placing sclerotia 
into the sheath of 40-day-old rice plants. Disease 
assessments included:
Incubation Period. Time from inoculation to first 
appearance of oval or round off-white lesions. 

Disease Incidence. Proportion of infected plants, 
observed weekly starting 7 days after inoculation. 

Disease Severity. Measured by lesion length on the 
leaf sheath and scored on a 0–9 scale (IRRI, 2002). 
Disease severity formula:

I
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100%
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#

#
#=

/

I   = Disease Severity;
ni = Number of leaves in each category;
vi = Scale value; 
N = Total number of leaves;
Z = Highest scale value.

The disease severity value calculated using the 
rice resistance scale against rice sheath blight can be 
seen in Table 2.

Area Under the Disease Progress Curve (AUDPC). 
The value of disease severity is calculated by the leaf 
damage score according to Ou (1985), which is shown 
in Table 1. Area Under the Disease Progress Curve 
was calculated using the formula from Campbell & 
Madden (1990):
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yi = Disease severity at time i;
ti   = time of observation.

Rice Growth Assessment. Plant growth was 

evaluated based on plant height, number of leaves, 
number of tillers, and grain weight. Observations 
were taken weekly from 7 days after planting 
until flag leaf appearance. Grain weight was 
measured after drying for 24 hours under sunlight. 
 
Characterization of Endophytic Bacterial Consortia 
as Bio-stimulants.
Phosphate Solubilization Test. Consortia were 
cultured on Pikovskaya agar containing 10 g glucose; 
5 g Ca3(PO4)2; 0.5 g (NH4)2SO4; 0.2 g KCl; 0.1 g 
MgSO4.7H2O; 0.01 g MnSO4.H2O; 0.5 g yeast extract 
and 0.01 g FeCl3.6H2O; 1 L distilled water at pH 7.0. 
Plates were incubated at room temperature for two 
weeks. Phosphate solubilization index was calculated 
by comparing the diameter of the clear zone and 
bacterial colony. The clear zone was observed and the 
phosphate solubilization index was measured based on 
the formula: 

PI
b
a b

=
-

PI = Phosphate Solubilization Index;
a   = Clear zone diameter (mm);
b   = Colony diameter (mm)

Indole Acetic Acid (IAA) Production. IAA production 
was assessed using the colorimetric method with 
Salkowski reagent containing 150 mL concentrated 
H2SO4, 250 mL distilled water, 7.5 mL FeCl3.6H2 0.5 
M using a spectrophotometer at a wavelength of 510 
nm (Aryantha et al., 2004). Bacterial consortia was 
grown in 5 mL Tryptic Soy Broth (TSB) supplemented 
with 0.1 mM tryptophan and incubated in the dark 
at 110 rpm for 48 hours. After centrifugation (1000 
rpm, 15 min), 1 mL supernatant was mixed with 4 
mL Salkowski reagent and incubated for 30 min. 
Absorbance was measured at 510 nm, and IAA 
concentration was determined using a standard curve 
(0–45 μg/mL).

Data Analysis. Data on disease incidence, severity, 
AUDPC, and rice growth parameters were analyzed 

Scoring      Symptom length (%)
0 0 (No symptoms)
1 ˂ 20
3 20–30
5 31–45
7 46–65
9 > 65 

Table 2. Scale of symptoms of sheath blight in rice plants



222         J. Trop. Plant Pests Dis.                                                                                                                     Vol. 25, No. 2 2025: 218–229

using Analysis of Variance (ANOVA) in Statistix 
8 software. Differences between treatments were 
compared using the Least Significant Difference (LSD) 
test at a 5% significance level.

RESULTS AND DISCUSSION

Effect of Introduced Endophytic Bacterial 
Consortium as Biocontrol Agents. The application 
of an endophytic bacterial consortium on rice seeds, 
followed by inoculation with the pathogenic fungus 
R. solani, significantly suppressed the incubation 
period of sheath blight symptoms compared to the 
control. Disease symptoms appeared between 2.55 
and 35.00 days post-inoculation across treatments. 
The  consortium comprising B. thuringiensis LmD13,  
O. intermedium LmB1, and S. maltophilia LmB35 
delayed symptom onset to 35 days significantly 
outperformed other consortia and the control. In 
contrast, the combination of B. thuringiensis LmD13 
and O. intermedium LmB1 alone did not significantly 
effect the incubation period. 

This bacterial consortium also significantly 
reduced sheath blight incidence, ranging from 
22.22% to 100% across treatments. The consortium 
of B. thuringiensis LmD13 + O. intermedium LmB1 
+ S. maltophilia LmB35 achieved the lowest incidence 
(22.22%), while  other treatments, including the 
control, showed incidences up to 100% (Table 3).

In terms of disease severity, the same consortium 
reduced severity to 0.29%, significantly lower than the 
15.05% and slightly lower than the B. thuringiensis 
LmD13 + O. intermedium LmB1 consortium (2.66%). 
The area under the disease progress curve (AUDPC) 

also supported these findings: the lowest AUDPC value 
(1.01) was recorded in the three-strain consortium, 
compared to the highest (313.35) in the control group. 
These results indicate that a lower AUDPC corresponds 
with reduced disease severity. 

The observed biocontrol effectiveness is 
attributed to synergistic interactions among the 
bacterial strains. The combined action of phosphate 
solubilization and siderophore production by B. 
thuringiensis LmD13 and S. maltophilia LmB35, along 
with chitinase production by O. intermedium LmB1 
(Rahma et al., 2024), likely contributed to disease 
suppression. These mechanisms are aligned with the 
concept of antibiosis, in which microbial secondary 
metabolites inhibit pathogen growth (El-Akhdar 
et al., 2020). For instance, siderophore production 
allows beneficial microbes to outcompete pathogens 
for iron—a critical nutrient in microbial colonization 
and biofilm formation (Rat et al., 2021). Additionally, 
chitinase enzymes degrade fungal cell walls, directly 
inhibiting pathogen establishment (Bakhat et al., 2023).

Rahma et al. (2022) also reported the efficacy of 
O. intermedium LmB1 and S. maltophilia LmB35 in 
suppressing bacterial leaf blight (X. oryzae pv. oryzae), 
reinforcing the potential of these strains. According 
to Santoyo et al. (2021) and Duncker et al. (2021), 
bacterial consortia often outperform single strains due 
to their complementary functions and complex defense 
mechanisms, which complicate pathogen resistance 
development. Nunes et al. (2024) further support that 
consortia can integrate multiple biocontrol pathways—
enzyme production, nutrient competition, and plant 
defense stimulation—enhancing their effectiveness.

Treatment Incubation periods 
(days)

Disease incidence 
(%)

Disease severity 
(%) AUDPC

B. thuringiensis LmD13 +                  
O. intermedium LmB1

3.55 bc 100 2.66 ab 56.63

B. thuringiensis LmD13 +                    
S. maltophilia LmB35

4.55 b 100 4.42 b 77.84

O. intermedium LmB1 +                    
S. maltophilia LmB35

4.88 b 100 5.21 b 100.69

B. thuringiensis LmD13 + 
O. intermedium LmB1 +                                         
S. maltophilia LmB35

35.00 a 22.22 0.29 a 1.01

Negative Control 2.55 c 100 15.04 c 313.35

Table 3. Effect of introduced of endophytic bacterial consortium on the incubation period, disease incidence, and 
severity of sheath blight in rice plants, 35 days after inoculation with R. solani

The numbers followed by the same letter within a column are not significantly different based on the LSD test at 
the 5% significance level.
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Effect of Introduced of Endophytic Bacterial 
Consortium on Rice Growth. Application of the 
endophytic bacterial consortia also positively affected 
rice growth. Treatments involving B. thuringiensis 
LmD13 + O. intermedium LmB1 + S. maltophilia 
LmB35 and O. intermedium LmB1 + S. maltophilia 
LmB35 significantly increased plant height to 123.33 
cm and 122.33 cm, respectively, compared to 107.67 
cm in the control. These consortia also significantly 
improved the number of leaves and tillers per clump 
relative to the control. 

In terms of productivity, the three-strain 
consortium led to the highest fresh and dry grain 
weights—72.78 g and 63.02 g, respectively—
outperforming both the control and other treatments 
(Table 4). This growth-promoting effect was supported 
by the consortium’s ability to solubilize phosphate 
and produce the highest levels of indole-3-acetic acid 
(IAA) (Table 5, Figure 3). The ability to dissolve 
phosphate was indicated by the appearance of a clear 

zone around the endophytic bacterial consortium on 
Pikovskaya media (Figure 2A) and a change in the 
color of the bacterial consortium supernatant to pink 
after the addition of Salkowski reagent (Figure 2B).

These enhancements in growth are attributed 
to the consortia’s ability to produce phytohormones 
and improve nutrient availability. Rahma et al. 
(2022) highlighted O. intermedium LmB1 and S. 
maltophilia LmB35 as superior individual strains for 
growth promotion. IAA plays a pivotal role in in plant 
physiology, including cell elongation, division, tissue 
differentiation, and root development (Shahzad et al., 
2017). Srinivasan & Mathivanan (2011) confirmed 
that consortia can yield higher IAA concentrations. 
According to Kesuma et al. (2016), a consortium of 
Bacillus cereus and Pseudomonas aeruginosa can 
enhance the height of the stem, leaf length, the number 
of tillers, and the number of panicles in Inpari rice 
plants. For example, O. intermedium has been shown 
to produce 9.65 ppm IAA (Imamuddin, 2015), while  

Treatment Rice plant 
height (cm)

Number of rice 
leaves

Number of 
rice tillers

Fresh grain 
weight (g)

Dry grain 
weight (g)

B. thuringiensis LmD13 + 
O. intermedium LmB1

   117.67 ab     158.33 bc     21.66 ab      70.30 ab       58.94 ab

B. thuringiensis LmD13 + 
S. maltophilia LmB35

   111.67 bc     175.78 ab     20.55 bc      68.26 b       58.34 ab

O. intermedium LmB1 + 
S. maltophilia LmB35

   122.33 a     197.33 a     23.33 a      66.30 b       54.76 b

B. thuringiensis LmD13 + 
O. intermedium LmB1 + 
S. maltophilia LmB35

   123.33 a     190.22 a     22.77 ab      72.78 a       63.02 a

Positif Control    107.67 c     144.89 c     18.22 c      58.56 c       48.11 c

Table 4. The effect of introduced of endophytic bacterial consortia and R. solani inoculation on the growth and 
yield of rice plants (50 days after planting)

The numbers followed by the same letter in the same column are not significantly different according to the LSD 
test at the 5% level.

Figure 2. Biostimulant activity of the endophytic bacterial consortium in rice. A. Phosphate solubilization on 
Pikovskaya agar, indicated by clear halo zones surrounding the bacterial colonies; B. IAA production 
in TSB medium supplemented with L-tryptophan, indicated by a pink color change after the addition 
of Salkowski reagent.

BA
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S. maltophilia produces 2.737 mg/L (Al Banna & 
Arifuddin, 2021). 

Additionally, the availability of nitrogen during 
grain filling is crucial. Ayaz et al. (2023) emphasized 
that phosphate-solubilizing endophytes serve dual 
roles: they suppress pathogens and act as biostimulants 
by promoting root health, nutrient uptake, and hormone 
production. Some, like those studied by Huong et al. 
(2022), also produce gibberellins and auxins, which 
further enhance growth. 

The most effective consortium, consisting of 
B. thuringiensis LmD13, O. intermedium LmB1, and 
S. maltophilia LmB35 successfully suppressed the 
development of sheath blight symptoms and enhanced 
rice plant growth, resulting in a plant height of 123.33 
cm, 22.77 tillers, and a grain weight of 72.78 g.

CONCLUSION

The results demonstrated that the endophytic 
bacterial consortium effectively controlled sheath 
blight and enhanced the growth and yield of rice plants. 
This consortium extended the incubation period to 
35.00 days after inoculation and significantly reduced 

disease incidence, severity, and the area under the 
disease progress curve (AUDPC) by 22.22%, 0.29%, 
and 1.01, respectively. Additionally, it increased rice 
yield, as indicated by the fresh and dry weights of rice 
grains, which reached 72.78 g and 63.02 g, respectively, 
compared to the positive control. The consortium of 
B. thuringiensis LmD13, O. intermedium LmB1, 
and S. maltophilia LmB35 shows strong potential 
as a biocontrol agent and growth promoter in rice 
cultivation.
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