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ABSTRACT

Accurate identification of pest species is fundamental to the development of effective integrated pest management (IPM)
strategies. This study presents the first molecular identification of the dominant fruit fly species infesting chili (Capsicum
annuum L.) in West Sumatra, Indonesia, using DNA barcoding of the mitochondrial cytochrome ¢ oxidase subunit I (COI)
gene. Adult specimens were collected between October 2024 and March 2025, and COI-specific primers were used to amplify
the genomic DNA extracted from adult tissues. The resulting ~685 bp sequences showed 99.0-99.4% similarity and 96—
100% query coverage with reference sequences of Atherigona orientalis (e.g., accession codes PQ483146.1, PQ483144.1,
EU627707.1) based on BLASTn analysis. Phylogenetic analysis using the Neighbor-Joining method further confirmed
species-level identification by clustering the specimens within the A. orientalis clade with strong bootstrap support. This
study provides the first molecular evidence of 4. orientalis infestation in chili crops in West Sumatra. The findings offer new
insights into the pest status of 4. orientalis within chili agroecosystems and emphasize the need for targeted pest management
strategies. Moreover, these results establish a valuable baseline for future studies on the host range, dispersal patterns, and

seasonal dynamics of this emerging pest to support more effective mitigation planning.
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INTRODUCTION

Inrecent decades, the production of chili peppers
(Capsicum spp.), which play a vital role in both global
cuisines and agricultural economies, has increased
dramatically (Simamora et al., 2021; Aprilia et al.,
2023). Worldwide chili production has risen from
approximately 5.47 million tonnes in 1970 to 36.97
million tonnes in 2022. Currently, cultivation covers
about 2,020,816 ha, yielding an average productivity
of 1.83 kg/m? (FAOSTAT, 2024a). Indonesia is among
the world’s leading chili-producing countries. In 2018,
it ranked fourth globally with over 2.5 million tonnes
of production, increasing to third position by 2022 with
nearly 3 million tonnes, following China and Mexico
(Sundari et al., 2021; Liu, 2022; FAOSTAT, 2024b).
Within Indonesia, West Sumatra is the fifth-largest
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producer of red chili (Khairat et al., 2024). Among its
19 districts and cities, Agam Regency produced 42,002
tonnes of chili in 2023, followed by Solok (41,168
tonnes), Tanah Datar (22,261 tonnes), and Padang
Pariaman (2,006 tonnes), collectively contributing
about 50% of the province’s total chili output (BPS
Statistics Indonesia Sumatera Barat, 2024).

Despite this high production potential, chili
cultivation faces serious threats from dipteran pests,
particularly fruit-infesting species belonging to the
families Tephritidae and Muscidae, which frequently
cause significant yield losses. Historically, species of
Bactrocera have been regarded as the primary culprits
(Budiyanti et al., 2019; Hidayat et al., 2023). However,
recent reports worldwide have highlighted increasing
damage associated with a previously underrecognized
species, Atherigona orientalis (Schiner, 1868),
commonly known as the tomato or pepper fruit fly. This
small, highly polyphagous species, often considered
saprophagous and associated with decaying organic
matter, has demonstrated an ability to infest healthy
fruits and even prey upon the larvae of other fruit
fly species such as Dacus spp. and Bactrocera spp.
Alarming infestations have been documented in several
countries, including Nigeria (Ogbalu & Ebere, 2005),
Indonesia (Herawani et al., 2019), Greece (Roditakis
et al., 2023), and China (Zhou et al., 2025), where A.
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orientalis has emerged as a serious pest of economically
important crops such as pepper. In Capsicum annuum,
fruit loss during the wet season has been reported to
reach up to 73.7% (Ogbalu & Ebere, 2005; Hibbard &
Overholt, 2012; Ogbalu, 2014; Herawani et al., 2019;
Roditakis et al., 2023). The larvae penetrate fruits at
all developmental stages and feed on the ovules, seeds,
placenta, and mesocarp, leading to premature fruit drop
and increased susceptibility to secondary infections by
rot-causing microorganisms (lheagwam & Nwankiti,
1981; Grzywacz & Pape, 2014; Suh & Kwon, 2016;
EPPO, 2025).

Accurate, timely, and reliable species-level
identification of fruit flies is essential for implementing
appropriate quarantine and management measures.
Although morphological identification remains a
fundamental approach, it has notable limitations,
particularly in distinguishing cryptic species or
when specimens are damaged or immature (White
&  Elsonharris, 1992). Consequently, several
molecular methods have been developed for fruit fly
identification, including loop-mediated isothermal
amplification (LAMP), real-time polymerase chain
reaction (PCR), DNA barcoding, restriction fragment
length polymorphism (RFLP), and microfluidic
dynamic array techniques (Dhami et al., 2016).
Among these, DNA barcoding has become the most
widely used method because it can differentiate most
species with high precision (Krosch et al., 2020).
The mitochondrial cytochrome ¢ oxidase subunit I
(COI) gene has proven particularly effective due to
its universality, variability, and compatibility with
global reference databases, offering high interspecific
resolution and robust phylogenetic clustering (Hebert
et al., 2003; Armstrong & Ball, 2005; Fuentes-Lopez
et al., 2020). Additionally, this method provides
rapid and reproducible species-level identification
that supports quarantine measures, IPM programs,
and pest diagnostics systems (Castellanos et al.,
2025). Regettably, certain challenges persist, such as
the potential amplification of nuclear mitochondrial
pseudogenes (numts), reliance on a single locus,
and difficulties in resolving species complexes with
overlapping intra- and interspecific variation (He et al.,
2024). To enhance accuracy, recent recommendations
emphasize the wuse of phylogenetic validation,
multilocus approaches, and the continued expansion of
curated barcode databases such as GenBank and BOLD
(Cheng et al., 2023). Despite these limitations, COI-
based DNA barcoding remains a fast, affordable, and
reliable method for molecular identification, supporting
ecological monitoring, biodiversity research, and the
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development of targeted pest management strategies
across diverse agroecosystems (Blacket et al., 2012;
Doorenweerd et al., 2020).

Collectively, although Indonesia contributes
substantially to global chili production, region-specific
entomological threats remain poorly documented. In
West Sumatra, 4. orientalis is widely distributed but
is generally regarded as a saprophagous species rather
than a direct pest. Consequently, many instances of
fruit damage have been broadly attributed to “fruit
flies” without species-level verification. Additionally,
no official molecular confirmation of this species as a
chili pest in the region has been reported. This study,
therefore, aims to address this critical knowledge gap
by providing the first molecular evidence confirming
A. orientalis as a major fruit fly pest infesting chili (C.
annuum L.) in West Sumatra. Through detailed genetic
identification and phylogenetic analysis, this research
enhances taxonomic clarity, deepens, understanding of
regional pest dynamics, and lays the foundation for the
development of targeted pest management strategies
within West Sumatra’s chili agroecosystems.

MATERIALS AND METHODS

Research Site. This study was conducted in major
chili-producing areas of West Sumatra Province,
Indonesia, including Agam, Tanah Datar, Solok, and
Padang Pariaman. These locations were selected
because they represent the primary centers of red chili
cultivation in the province and encompass contrasting
altitudinal ranges and agroecological conditions,
which are expected to influence fruit fly abundance and
infestation patterns.

Sample Collection and Morphological Pre-
identification. Adult fruit fly specimens infesting
chili were collected from damaged chili fruits between
October 2024 and March 2025 in the major chili-
producing regions of Agam (0°17'S, 100°09'E),
Tanah Datar (0°27'S, 100°35'E), Solok (0°47'S,
100°39'E), and Padang Pariaman (0°37'S, 100°13'E),
in West Sumatra, Indonesia. Sampling was conducted
using two approaches: direct hand-picking of adults
emerging from infested fruits and baited traps installed
in chili fields.

Infested chili fruits were collected using a
rectangular diagonal sampling method, including
fruits attached to plants and those fallen on the ground.
Fruits selected for rearing and molecular analysis were
standardized by sizes and maturity stages (ripe or
senescing), regardless of attachment status. In addition,
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a modified Lynfield trap was installed at the center of
each diagonal-rectangle sampling plot, positioned 1.5
m above ground level using wooden stakes for support.
Traps were deployed at 07:00 and retrieved at 17:00.
Petrogenol 800 L (methyl eugenol) was used as the
attractant, cotton wicks were impregnated with 1.5 mL
of attractant to ensure full saturation without dripping.

Collected  specimens were immediately
preserved in 95% ethanol and transported under cold-
chain conditions to the Molecular Biology Laboratory,
Andalas University, for further processing. Each
sample vial was labeled with the collection location,
site code, and sampling date.

DNA Extraction. Genomic DNA was extracted
individually from adult specimens using the
2-SYNCTM DNA Extraction Kit (Geneaid, GS300),
following the manufacturer’s protocol. The purity and
concentration of extracted DNA were assessed using
a Nanodrop 2000 spectrophotometer (Thermo Fisher
Scientific, USA). A representative sample (G-3962-
1; Table 1) exhibited high-purity nucleic acid with an
A, Tatio of 2.21 and a concentration of 15.6 ng/
pL, indicating suitability for downstream molecular
analysis (Geneaid, 2017).

PCR Amplification. Amplification of the mitocho-
drial cytochrome ¢ oxidase subunit [ (COI) gene was
performed using the KOD FX Neo PCR Kit (Toyo-
bo, Japan; KFX-201) (Toyobo, 2004). Approximate-
ly 700 bp of the target region was amplified using
universal primers LCO1490 (5'-GGTCAACAAAT-
CATAAAGATATTGG-3') and HCO2198 (5'-TA-
AACTTCAGGGTGACCAAAAAATCA-3').

Each 25 pL PCR reaction contained 4.5 pL
nuclease-free water, 12.5 pLL PCR Buffer KOD FX
Neo, 5 pL dNTPs, 0.75 pL of each primer (10 pM),
1 pL of template DNA, and 0.5 pL KOD FX Neo
polymerase. Thermal cycling conditions followed the
manufacturer’s protocol and standard DNA barcoding
recommendationss (Folmer et al, 1994): initial
denaturation at 94 °C for 2 min, followed by 35 cycles
of 98 °C for 10 s, 50 °C for 30 s, and a final extension
at 72 °C for 45 s.

Gel Electrophoresis and Visualization. PCR
amplification success was verified by electrophoresis
on a 1% agarose gel prepared in TBE buffer.
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Electrophoresis was conducted for 25-30 min at 100 V
using a horizontal electrophoresis chamber connected
to a DC power supply (Green & Sambrook, 2012).
Gel were stained with SYBR Safe and visualized
under ultraviolet illumination using a GelDoc imaging
system (Bio-Rad, USA), following the manufacturer’s
instructions (Invitrogen, 2007). Successful
amplification was indicated by a single distinct band of
approximately 700 bp.

Sanger Sequencing and Sequence Assembly. Purified
PCR products were sent to PT Genetika Science
Indonesia (Tangerang, Indonesia) for bidirectional
Sanger sequencing using the capillary electrophoresis.
Forward and reverse sequences were assembled into a
685 bp consensus sequence (sample code: G-3962-1)
using BioEdit v7.2 software.

BLAST Analysis. Consensus sequences were
analyed using the BLASTn algorithm against the
NCBI nucleotide database. Sequences showing >98%
similarity and >95% query coverage with reference
sequences were considered conspecific matches,
confirming species-level identification.

Phylogenetic Analysis. Phylogenetic relationships
were inferred using the Neighbor-Joining (NJ)
method with Kimura 2-parameter distances via the
NCBI BLAST Tree View tool, following approaches
reported in previous studies (Marassi, 2011; Chen
et al.,, 2024). Clade robustness was evaluated using
1000 replicates. Reference sequences of Atherigona
orientalis and closely related Muscidae species were
included to validate clustering patterns and confirm
species identity.

RESULTS AND DISCUSSION

Morphological Diagnosis of Atherigona orientalis.
Male and female Atherigona orientalis (Figure 1)
can be readily distinguished based on a combination
of external morphological characters and terminalia.
Males are small muscid flies with a grayish-yellow
body, darker dorsal markings, and hyaline, elongate
wings. The head bears large, closely set reddish
compound eyes, a narrow frons, and short, three-
segmented antennae with a plumose arista (Folmer et
al., 1994; Marassi, 2011; Chen et al., 2024). The thorax

Table 1. DNA quantification results measured using a NanoDrop 2000 spectrophotometer

Name Sample Code sample

Concentration (ng/pL) A A

60250 Volume (pL)

200/230

Chili’s Fruit Fly G-3962-1 15.6

2.21 3.08 40




Sang et al.

is gray-brown with faint longitudinal striping, and the
yellowish-brown scutellum is armed with strong setae.
The slender yellowish-brown legs carry fine bristles,
some of which are sexually dimorphic and associated
with mating behavior (Green & Sambrook, 2012;
CABI, 2021). The abdomen is relatively elongate
and posteriorly tapering, terminating in a prominent
hypopygium, in which the structure of the surstyli and
cerci provides key diagnostic characters for species-
level identification (Grzywacz & Pape, 2014; Geneaid,
2017).

Females are generally similar to males in overall
coloration and wing morphology; however, they
possess a broader frons and more widely separated
reddish compound eyes (Roditakis et al., 2023; Chen et
al., 2024). The antennae are likewise three-segmented
with a plumose arista and show no conspicuous sexual
modifications, while the thorax and scutellum retain
the gray-brown ground color, faint longitudinal stripes,
and well-developed setae characteristic of the species
(Marassi, 2011). As in males, the wings are hyaline and
elongate with the characteristic Atherigona venation,
including a distinct R1 vein (Folmer et al., 1994).
Female legs are slender and yellowish-brown but lack

A
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the specialized courtship-related bristles found in males,
and the abdomen is stouter and less abruptly tapering,
ending in a well-developed ovipositor adapted for
inserting eggs into soft plant tissues. he configuration
of the ovipositor and associated sclerites is particularly
informative for discriminating females of A. orientalis
from closely related congeners (Grzywacz & Pape,
2014; Chen et al., 2024; EPPO, 2025).

DNA Extraction, Amplification, and Sequencing.
High-quality genomic DNA was successfully extracted
from adult fruit fly specimens. The representative
sample (G-3962-1) yielded DNA concentration and
purity values within acceptable ranges for molecular
analyses, with a concentration of 15.6 ng/uL, an A, .
ratio of 2.21, and an A, . ratio of 3.08, indicating
low levels of protein and solvent contamination. These
values are consistent with standards recommended
for high-fidelity PCR amplification and sequencing
workflows (Green & Sambrook, 2012).

The mitochondrial COI gene was reliably
amplified, producing an approximately 700 bp
fragment (Figure 2), which corresponds to the
commonly used DNA barcode region for insects

Figure 1. Adult pepper fruit fly Atherigona orientalis (Diptera: Muscidae). A. Male; B. Female.

Figure 2. PCR amplification of pepper fruit fly COI primers from specimens collected in West Sumatra.
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(Folmer et al., 1994; Hebert et al., 2003). The absence
of amplification in negative controls further confirms
that laboratory procedures effectively prevented
cross-contamination, an essential requirement for
accurate species authentication in Diptera (Collins &
Cruickshank, 2013).

Clean, bidirectional chromatograms enabled
the assembly of a high-quality 685 bp consensus
sequence (Figure 3), exceeding the minimum
threshold recommended for reliable species-level
identification and phylogenetic analysis (Hebert
& Gregory, 2005; Ratnasingham & Hebert, 2007).
Similar sequencing success has been reported in
studies identifying Atherigona spp. and other Muscidae
using mitochondrial markers (Singh & Achint, 2017),
indicating that the protocol employed in this study is
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robust and reproducible. The resulting COI sequence
will be submitted to GenBank, contributing to the
global molecular reference library for Muscidae
and supporting future taxonomic, ecological, and
biosecurity research.

BLAST Analysis and Species Confirmation. BLASTn
analysis of the consensus COI sequence against the
NCBI nucleotide database produced E-values of 0.0,
indicating extremely high-confidence homologous
matches (Figure 4). The query sequence shared
99.0-99.4% identity and 96-100% query coverage
with multiple authenticated Atherigona orientalis
accessions, including PQ483146.1, PQ483144.1, and
EU627707.1 (Table 2). These levels of similarity fall
well within the accepted thresholds for species-level

1 TAAAGATATT GGARACCCTTT ATTTTATTTT CGGAGCTTGA TCTGGAATAG TAGGAACTTC
61 TTTAAGTATT TTAATTCGAG CAGAATTAGG TCATCCAGGA GCTTTAATTG GAGATGATCA
121 AATTTATAAC GTAATTGTTA CTGCTCATGC TTTTATTATA ATTTTTTTTA TAGTAATACC
181 AATTATAATT GGAGGATTTG GAAATTGATT AGTGCCTTTA ATATTAGGAG CTCCTGATAT
241 AGCCTTTCCT CGAATAAATA ATATAAGATT TTGACTTCTT CCCCCTGCTT TAACACTTTT
301 ATTAGTTAGT AGTATAGTTG AAAACGGAGC TGGGACTGGA TGAACAGTTT ACCCACCTTT
361 ATCTTCTAAT ATTGCTCATG GAGGAGCTTC AGTAGATTTA GCAATTTTTT CTTTACATTT
421 AGCTGGAATT TCTTCAATTT TAGGGGCAGT AAATTTTATT ACAACAGTTA TTAATATACG
481 ATCAACAGGA ATTACATTTG ATCGAATGCC TTTATTTGTA TGATCAGTAG TAATTACTGC
541 CTTATTACTT TTATTATCTT TACCAGTATT AGCAGGAGCT ATTACTATAT TACTAACAGA
601 TCGAARATTTA AATACTTCAT TTTTTGATCC AGCTGGTGGT GGAGATCCTA TTCTTTATCA
661 ACATTTATTT TGATTTATTT GGTCA
Figure 3. Sequence assembly results of the amplified CO! fragment (685 bp).
0.00
0.01 | Prosophila bocki AB669730.1
0.00
0.05 I:Drosophila anomalata voucher DANOM20180902 MK 659806.1
0.01
0.01 | Drosophila ogumai AB669740.1
.00
0.04 Chilis Fruit F|
0.00 4@.00 4
0.04 Atherigona orientalis PQ483146.1
- Haematostoma austeni isolate HSKYF3 KC960707.1
0.05  4elia cilipes isolate Hydro 9 KU932127.1
0.00 0.04
Sarconesiopsis magellanica OR771696.1
0.03 0.00 0.03
0.02 - Hydrotaea velutina voucher KEIB.DIP 00243 MN555665.1
0.04 Hydrotaea armipes isolate DM829 MT920422.1
0.05 Leucophenga helvipecta voucher DIP128604 MG784226.1
0.11 Aedes aegypti isolate ID/BTL/06 OR054074.1
0.020

Figure 4. Neighbor-Joining phylogenetic tree based on mitochondrial COI sequences showing the position of
the pepper fruit fly Atherigona orientalis (specimen G 3962 1, “chili fruit fly”) relative to selected
Diptera reference sequences from NCBI. The tree was inferred using the Kimura 2-parameter model
with 1000 bootstrap replicates. Numbers at the nodes indicate bootstrap support values, and the scale

bar represents 0.02 substitutions per site.
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Table 2. Summary of BLASTn database matches of COI sequences

No. Species name Accession number Query coverage (%)  Identity (%) E-value
1 Atherigona orientalis PQ483146.1 99 99.41 0.0
2 Atherigona orientalis PQ483144.1 99 99.41 0.0
3 Atherigona orientalis EU627707.1 100 99.12 0.0

resolution in insects using COI barcoding, which
typically requires >97-98% identity for reliable
identification (Hebert et al., 2003; Ratnasingham &
Hebert, 2007). Comparable high-identity matches
have been reported in previous molecular studies on
Muscidae, supporting the diagnostic robustness of CO/
for distinguishing A. orientalis from congeners and
other sympatric dipteran pests (Chan et al., 2014; Singh
& Achint, 2017). The present results therefore confirm
that COI barcoding remains a highly dependable tool for
rapid and accurate species confirmation in operational
pest management and biosecurity programs.

Phylogenetic reconstruction using the Neighbor-
Joining method further validated the BLAST-based
identification, with the G-3962-1 sequence clustering
tightly within the A. orientalis clade and receiving
strong bootstrap support (>98%). This pattern of tight
clustering is consistent with the low intraspecific
COI divergence commonly reported for 4. orientalis
populations across Asia and Africa (Achint & Singh,
2021). The phylogenetic placement also indicated
geographic independence, suggesting minimal regional
structuring and reinforcing the species’ genetic stability
across its distribution. Collectively, the combination of
high BLAST identity, strong phylogenetic support, and
minimal intra-clade divergence confirms the precise
molecular identification of A. orientalis and aligns
with the broader literature emphasizing the reliability
of COI-based diagnostics in Muscidae taxonomy and
pest surveillance (Collins & Cruickshank, 2013).

Relevance in Pest Dynamics and Regional Context.
This study provides the first molecular evidence
confirming A. orientalis infestation in chili (C.
annuum) crops in West Sumatra, Indonesia, which
represents an important finding for regional agricultural
entomology. In Bogor, Java, A. orientalis has been
recorded emerging from chili fruits, occasionally at
higher frequencies than the common tephritid pest
Bactrocera dorsalis, suggesting its potential role as
a primary pest in that region (Herawani et al., 2018).
Globally, A. orientalis is recognized as a pantropical
species commonly associated with decaying organic
matter; however, it has become a significant pest of
tomatoes and peppers in regions such as Egypt, India,

Nigeria, and Iraq (Jackson, 2022).

Of particular note, A. orientalis has been
observed infesting pepper fruits independently,
without the presence of tephritid larvae, as reported in
greenhouse pepper production systems in Crete, Greece
(Roditakis et al., 2023). This behavior underscores
the species’ capacity to function as a stand-alone pest
rather than merely a secondary invader. The findings
from West Sumatra therefore align with global trends,
indicating a possible behavioral shift in 4. orientalis
from a saprophagous habit to an active phytophagous
pest exploiting healthy chili fruits.

Implications for Integrated Pest Management
(IPM). The molecular confirmation of A. orientalis
(Figure 4) as a chili pest has critical implications for
IPM programs in Indonesia. Current [PM strategies for
chili cultivation—such as mass trapping, protein bait
sprays, and cultural control practices—are primarily
designed to target tephritid fruit flies. However, 4.
orientalis may respond differently to these attractants
and control methods. For instance, calyx morphology
has been shown to influence oviposition behavior;
pepper varieties with open or grooved calyces tend to
be more susceptible to infestation (EPPO, 2024).

In regions like Greece, the emergence of A.
orientalis as a new pest has necessitated modifications
to existing IPM protocols, as conventional measures
targeting other insect groups (Roditakis et al., 2023).
Similar adjustments may be required in Indonesia
to manage this species effectively. Additionally,
preventive cultural practices—such as avoiding the
use of chicken manure as a breeding substrate—are
recommended to minimize population buildup and
reduce infestation risk (EPPO, 2024).

CONCLUSION

The study provides the first molecular evidence
confirming Atherigona orientalis infestation of chili
(Capsicum annuum L.) in West Sumatra, Indonesia.
Species-level identification was validated through
COI DNA barcoding, with BLAST and phylogenetic
analyses showing more than 99% sequence similarity
to reference A. orientalis sequences. These findings
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clarify previous uncertainties regarding the species
responsible for fruit fly infestations in the region and
highlight the need to revise existing integrated pest
management (IPM) strategies, as this muscid fly may not
respond effectively to conventional control approaches
designed for tephritid fruit flies. Establishing this
molecular baseline provides a foundation for future
research on the ecology, distribution, and population
dynamics of A. orientalis, ultimately supporting
the development of more targeted and sustainable
management strategies to reduce yield losses and
ensure the long-term resilience of chili production
systems.
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