Tar spot disease of sorghum plants caused by Phyllachora sp. in Bogor, Gunung Kidul and West Lombok, Indonesia

Main Article Content

Dwi Astuti
Suryo Wiyono
Sri Hendrastuti Hidayat
Trikoesoemaningtyas
Satya Nugroho

Abstract

The sorghum (Sorghum bicolor) plant is highly tolerant and adapted to drought. It has the potential to be developed and planted on marginal land in Indonesia. Tar spot disease is one of the obstacles to sorghum cultivation. In Indonesia, there is no report yet about this disease, especially on sorghum. To achieve optimal disease management, information on disease incidence and severity levels, as well as pathogen tar spot disease identification, are required. The aims of this study were to morphologically identify the pathogen and determine the level of incidence and severity of tar spot in sorghum cultivation areas in Bogor Regency, Gunung Kidul Regency, and West Lombok Regency. The disease observations were carried out on 17 sorghum varieties from the three areas with no experimental design. The results of the observation of the tar spot disease incidence in 17 varieties of sorghum from Bogor, Gunung Kidul, and West Lombok were 100%. The level of tar spot disease severity varied from 32.4% in the Latu Keta sorghum variety to the highest of 87.9% in the Samurai sorghum variety. The macroscopic and microscopic observation results of tar spot on sorghum plants showed that the cause of the tar spot disease was the Phyllachora fungi. This is the first report of a tar spot on sorghum caused by Phyllachora sp. in Indonesia.

Article Details

How to Cite
(1)
Astuti, D.; Wiyono, S.; Hidayat, S. H.; Trikoesoemaningtyas, T.; Nugroho, S. . Tar Spot Disease of Sorghum Plants Caused by Phyllachora Sp. In Bogor, Gunung Kidul and West Lombok, Indonesia. J Trop Plant Pests Dis 2023, 23, 38-46.


Section
Articles

References

Ahn E, Hu Z, Perumal R, Prom LK, Odvody G, Upadhyaya HD, & Magill C. 2019. Genome wide association analysis of sorghum mini core lines regarding anthracnose, downy mildew and head smut. PloS ONE. 14(5): e0216671. https://doi.org/10.1371/journal.pone.0216671

Bhuiyan NH, Selvaraj G, Wei Y, & King J. 2009. Role of lignification in plant defense. Plant Signal. Behav. 4(2): 158–159. https://doi.org/10.4161/psb.4.2.7688

Biruma M, Martin T, Fridborg I, Okori P, & Dixelius C. 2012. Two loci in sorghum with NB-LRR encoding genes confer resistance to Colletotrichum sublineolum. Theor. Appl. Genet. 124(6): 1005–1015. https://doi.org/10.1007/s00122-011-1764-8

Cao S, Loladze A, Yuan Y, Wu Y, Zhang A, Chen J, Huestis G, Cao J, Chaikam V, Olsen M, Prasanna BM, Vicente FS, & Zhang X. 2017. Genome-wide analysis of tar spot complex resistance in maize using genotyping-by-sequencing SNPs and whole genome prediction. Plant Genome. 10(2): 1–14. https://doi.org/10.3835/plantgenome2016.10.0099

Das IK & Rajendrakumar P. 2017. Disease resistance in sorghum. In: Das IK & Padmaja PG (Eds.). Biotic Stress Resistance in Millets. pp. 23–67. Academic Press, Massachusetts, US. https://doi.org/10.1016/B978-0-12-804549-7.00002-0

Das IK. 2019. Advances in sorghum disease resistance. In: Aruna C, Visarada KBRS, Bhat BV, & Tonapi VA (Eds.). Breeding Sorghum for Diverse and Uses. pp. 313–324. Woodhead Publishing, Cambridge, UK. https://doi.org/10.1016/B978-0-08-101879-8.00019-X

Dayarathne MC, Maharachchikumbura SSN, Jones EBG, Goonasekara ID, Bulgakov TS, Al-Sadi AM, Hyde KD, Lumyong S, & McKenzie EHC. 2017. Neophyllachora gen nov. (Phyllachorales), three new species of Phyllachora from Poaceae and resurrection of Polystigmataceae (Xylariales). Mycosphere. 8(10): 1598–1625. https://doi.org/10.5943/mycosphere/8/10/2

Gladman N, Jiao Y, Lee YK, Zhang L, Chopra R, Regulski M, Burow G, Hayes C, Christensen SA, Dampanaboina L, Chen J, Burke J, Ware D, & Xin Z. 2019. Fertility of pedicellate spikelets in sorghum is controlled by a jasmonic acid regulatory module. Int. J. Mol. Sci. 20(19): 4951. https://doi.org/10.3390/ijms20194951

Horsfall JG & Barratt RW. 1945. An improved grading system for measuring plant disease. Phytopathology. 35: 655.

IPPC. 2009. International Standard for Phytosanitary Measures (ISPM). FAO, Italy.

Kleczewski NM, Plewa DE, Bissonnette KM, Bowman ND, Byrne JM, LaForest J, Dalla-Lana F, Malvick DK, Mueller DS, Chilvers MI, Paul PA, Raid RN, Robertson AE, Ruhl GE, Smith DL, & Telenko DEP. 2020. Documenting the establisment, spread, and severity of Phyllachora maydis on corn, in The United States. J. Integr. Pest Manag. 11(1): 14; 1–5. https://doi.org/10.1093/jipm/pmaa012

Kong W, Kim C, Zhang D, Guo H, Tan X, Jin H, Zhou C, Shuang LS, Goff V, Sezen U, Pierce G, Compton R, Lemke C, Robertson J, Rainville L, Auckland S, & Paterson AH. 2018. Genotyping by sequencing of 393 Sorghum bicolor BTX623 x IS3620C recombinant inbred lines improves sensitivity and resolution of QTL detection. G3: Genes Genomes Genet. 8(8): 2563–2572. https://doi.org/10.1534/g3.118.200173

Lee MH, Jeon HS, Kim SH, Chung JH, Roppolo D, Lee HJ, Cho HJ, Tobimatsu Y, Ralph J, & Park OK. 2019. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. The EMBO Journal. 38(23): e101948. https://doi.org/10.15252/embj.2019101948

Li XL, Wu SR, Wang CL, Feng YL, Zhao CY, Chen ZQ, Yu JF, Luo R, Promputtha I, & Sun DF. 2019. Two new species of Phyllachora (Phyllachoraceae, Phyllachorales) on bamboo from China. Phytotaxa. 425(2): 078–086. https://doi.org/10.11646/phytotaxa.425.2.2

Loladze A, Rodrigues FA Jr, Toledo F, Vicente FS, Gérard B, & Boddupalli MP. 2019. Application of remote sensing for phenotyping tar spot complex resistance in maize. Front. Plant Sci. 10: 552. https://doi.org/10.3389/fpls.2019.00552

Mahuku G, Vicente FMS, & Shrestha R. 2013. Tar spot complex of maize: Facts and actions. International Maize and Wheat Improvement Center CIMMYT. Accessed June 16th 2020. https://www.researchgate.net/publication/266732736

McCoy AG, Romberg MK, Zaworski ER, Robertson AE, Phibbs A, Hudelson BD, Smith DL, Beiriger RL, Naid RN, Byrne JM, & Chilvers MI. 2018. First report of tar spot on corn (Zea mays) caused by Phyllachora maydis in Florida, Iowa, Michigan and Wisconsin. Plant Dis. 102(9): 1851–1855. https://doi.org/10.1094/PDIS-02-18-0271-PDN

Monteiro FT, Vieira BS, & Barreto RW. 2003. Curvularia lunata and Phyllachora sp.: two fungal pathogens of the grassy weed Hymenachne amplexicaulis from Brazil. Australas. Plant Pathol. 32: 449–453. https://doi.org/10.1071/AP03047

Mottaleb KA, Loladze A, Sonder K, Kruseman G, & Vicente FS. 2019. Threats of tar spot complex disease of maize in the United States of America and its global consequences. Mitig. Adapt. Strateg. Glob. Change. 24: 281–300. https://doi.org/10.1007/s11027-018-9812-1

Pereira J, Bezerra JL, Drechsler-Santos ER, & Maia LC. 2010. First report of Phyllachora serjaniicola causing tar-spot on Cardiospermum grandiflorum. Trop. Plant Pathol. 35(4): 245–247. https://doi.org/10.1590/S1982-56762010000400007

Puttalingaiah B. 2011. Mechanism of Disease Resistance in Sorghum: Infection Induced Defense Responses in Sorghum: Accumulation of Reactive Oxygen Species and Cell Wall Modifications. LAP Lambert Academic Publishing, Chisinau.

Ruhl G, Romberg MK, Bissonnette S, Plewa D, Creswell T, & Wise KA. 2016. First report of tar spot on corn caused by Phyllachora maydis in the United States. Plant Dis. 100(7): 1496. https://doi.org/10.1094/PDIS-12-15-1506-PDN

Rustiani US, Sinaga MS, Hidayat SH, & Wiyono S. 2015. Tiga spesies Peronosclerospora penyebab penyakit bulai jagung di Indonesia [Three species of Peronosclerospora as a cause downy mildew on maize in Indonesia. Berita Biologi. 14(1): 29–37.

Santosa DDS & Human S. 2009. Modified starch of sorghum mutant line Zh-30 for high fiber muffin products. Atom Indonesia. 35(1): 1–9. https://doi.org/10.17146/aij.2009.43

Singh R, Shim S, Telenko DEP, & Goodwin SB. 2022. The parental inbred lines of the Nested Association Mapping (NAM) population of corn show sources of resistance to tar spot In Northern Indiana. Plant Dis. 2022 Jul 14. https://doi.org/10.1094/PDIS-02-22-0314-SC

Soenartiningsih, Fatmawati, & Adnan AM. 2013. Identifikasi beberapa penyakit utama pada tanaman sorgum dan jagung di Sulawesi Tengah [Identification of main diseases of sorghum and corn in central sulawesi]. In: Haryono, Subagio H, Aqil M, & Pabendon MB (Eds.). Prosiding Nasional Serealia. pp. 420–432. Balai Penelitian Serealia. Maros.

Tabri F & Zubachtirodin. 2013. Budidaya tanaman sorgum [Sorghum cultivation]. In: Sumarno, Damardjati DS, Syam M, & Hermanto (Eds.).

Sorgum: Inovasi Teknologi dan Pengembangan. pp. 175–187. IAARD Press.

Tonge DP, Pashley CH, & Gant TW. 2014. Amplicon-based metagenomic analysis of mixed fungal samples using proton release amplicon sequencing. Plos ONE. 9(4): e93849. https://doi.org/10.1371/journal.pone.0093849

Zadoks JC & Schein RD. 1979. Epidemology and Plant Disease Management. Oxford University Press, New York.