Screening of Trichoderma spp. isolates based on antagonism and chitinolytic index against Xylaria sp.

Authors

  • Wiwit Wicaksono Jati Department of Plant Protection, Faculty of Agriculture, Universitas Brawijaya
  • Abdul Latief Abadi Department of Plant Protection, Faculty of Agriculture, Universitas Brawijaya
  • Luqman Qurata Aini Department of Plant Protection, Faculty of Agriculture, Universitas Brawijaya
  • Syamsuddin Djauhari Department of Plant Protection, Faculty of Agriculture, Universitas Brawijaya

DOI:

https://doi.org/10.23960/jhptt.12255-67

Keywords:

antagonism, chitinolytic, sugarcane, Trichoderma spp, Xylaria sp.

Abstract

Sugarcane disease disturbance is one of the limiting factors in achieving high productivity. Xylaria sp. has become endemic to sugarcane plantations in Lampung and South Sumatra. The intensity of disease attacks in Indonesia by 25% and 26% can reduce sugar production 12.3 and 15.4%, respectively. Losses due to disease attacks are greater in ratoons because plant cane sugarcane which is attacked by this disease, in ratoon stage, there will be a decrease in the number of shoots. The aim of this study was to obtain isolates of Trichoderma spp. which have antagonistic abilities and have chitinase enzymes so that they are effectively used as biological agents against Xylaria sp. The research method of antagonist test used dual culture test and qualitative test of chitin substrate was used to assess the chitinolytic index of four isolates of Trichoderma spp. The parameters were the inhibition of Trichoderma spp. isolates and the chitinolytic index of the four isolates moreover the value of the chitinase enzyme activity of the selected isolates. Mechanism of antagonist T10 are competition, antibiosis and mycoparasitism. The results showed that the Indonesian Sugar Research Institute (ISRI) T10 isolate could be used as a biological agent against Xylaria sp. The isolate had an inhibitory ability 73.33% with a chitinolytic index value 1.15 and the activity value of the chitinase enzyme crude extraction at a dilution 10-1 was 10.99 units/mL.

References

Adnan M, Islam W, Shabbir A, Khang KA, Ghramh HA, Huang Z, Chen HYH, & Lu GD. 2019. Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microb. Patog. 129: 7–18. https://doi.org/10.1016/j.micpath.2019.01.042

Agrawal T & Kotasthane AS. 2012. Chitinolytic assay of indigenous Trichoderma isolates collected from different geographical locations of Chhattisgarh in Central India. SpringerPlus. 1(73): 1–10. https://doi.org/10.1186/2193-1801-1-73

Alfizar, Marlina, & Susanti F. 2013. Kemampuan antagonis Trichoderma sp. terhadap jamur patogen in vitro [The ability of antagonist Trichoderma sp. against some pathogenic fungus in vitro]. J. Floratek. 8(1): 45–51.

Amaria W, Taufiq E, & Harni R. 2013. Seleksi dan identifikasi jamur antagonis sebagai agens hayati jamur (Rigidoporus microporus) pada tanaman karet [Selection and identification of antagonistic fungi as biological agents of white root disease (Rigidoporus microporus) in rubber]. Buletin RISTRI. 4(1): 55–64.

Berlian I, Setyawan B, & Hadi H. 2013. Mekanisme antagonisme Trichoderma spp. terhadap beberapa patogen tular tanah [Mechanism of antagonism of Trichoderma spp. againts several soil borne pathogens]. Warta Perkaretan. 32(2): 74–82. https://doi.org/10.22302/ppk.wp.v32i2.39

Cherkupally R, Amballa H, & Reddy BN. 2016. In vitro antagonistic activity of Trichoderma and Penicillium species against Macrophomina phaseolina (Tassi) Goid. Ann. Biol. Res. 7(9): 34–38.

Corneliyawati E, Massora, Khikmah, & Arifin AS. 2018. Optimalisasi produksi enzim kitinase pada isolat jamur kitinolitik dari sampel tanah rizosfer [Optimization of chitinase enzyme production in chitinolytic fungal isolates from rhizosphere soil samples]. Edubiotik. 3(01): 62–69. https://doi.org/10.33503/ebio.v3i01.80

Cui Z, Wang Y, Lei N, Wang K, & Zhu T. 2013. Botrytis cinerea chitin synthase BcChsVI is required for normal growth and pathogenicity. Curr. Genet. 59: 119–128. https://doi.org/10.1007/s00294-013-0393-y

Daniel JFdS & Filho ER. 2007. Peptaibols of Trichoderma. Nat. Prod. Rep. 24(5): 1128–1141. http://dx.doi.org/10.1039/b618086h

Elsoud MMA & El Kady EM. 2019. Current trends in fungal biosynthesis of chitin and chitosan. Bull. Natl. Res. Cent. 43: 59. https://doi.org/10.1186/s42269-019-0105-y

Fang JG & Lee CS. 2000. Root and basal stem rot. In: Rott P, Bailey RA, Comstock JC, Croft BJ, & Saumtally AS (Eds.). A Guide to Sugarcane Diseases. Cirad and ISSCT. pp. 170–173. CIRAD Organization.

Gow NAR, Latge JP, & Munro CA. 2017. The fungal cell wall: structure, biosynthesis, and function. Microbiol. Spectr. 5(3): FUNK-0035-2016. https://doi.org/10.1128/microbiolspec.FUNK-0035-2016

Halim Y, Hardoko, & Christy A. 2018. Optimum conditions for N-acetyl glucosamine production from Penaeus monodon shrimp shells by solid state fermentation using Trichoderma virens. AJMBES. 20(4): 1081–1088.

Halwiyah N, Ferniah RS, Raharjo B, & Purwantisari S. 2019. Uji antagonisme jamur patogen Fusarium solani penyebab penyakit layu pada tanaman cabai dengan menggunakan Beauveria bassiana secara in vitro [Antagonism test of the pathogenic fungus Fusarium solani that causes wilt disease in chili plants using Beauveria bassiana in vitro]. Jurnal Akademika Biologi. 8(2): 8–17.

Hastuti US & Rahmawati I. 2016. The antagonism mechanism of Trichoderma spp. towards Fusarium solani mold. J. Pure App. Chem. Res. 5(3): 178–181. http://dx.doi.org/10.21776/ub.jpacr.2016.005.03.260

Herdyastuti N, Cahyaningrum SE, Raharjo TJ, Mudasir, & Matsjeh S. 2010. Chitynolitic bactery activity isolated from the mud fields. Berk. Penel. Hayati. 15(2): 107–111. https://doi.org/10.23869/bphjbr.15.2.20102

Insani KV & Herdyastuti N. 2016. Pengaruh konsentrasi enzim optimum pada pembentukan N-asetilglukosamin [Effect of optimum enzyme concentration in the establishment of N-acetylglucosamine]. UNESA Journal of Chemistry. 5(3): 60–63.

Izzatinnisa, Utami U, & Mujahidin A. 2020. Uji antagonisme beberapa fungi endofit pada tanaman kentang terhadap Fusarium oxysporum secara in vitro [Antagonistic effect of several endophyte fungi in potato plants against Fusarium oxysporum in vitro]. Jurnal Riset Biologi dan Aplikasinya. 2(1): 18–25. https://doi.org/10.26740/jrba.v2n1.p18-25

Khikmah N, Margiono S, & Kasiamdari RS. 2016. Isolasi, seleksi, identifikasi kapang kitinolitik yang diisolasi dari tanah pembuangan limbah udang dan rizosfer solanaceae [Selection and identification of chitinolytic fungi isolated from shrimp waste soil and Solanaceae rhizosphere]. Biota. 1(1): 1–8. https://doi.org/10.24002/biota.v1i1.706

Kumar G, Maharshi A, Patel J, Mukherjee A, Singh HB, & Sarma BK. 2017. Trichoderma: a potential fungal antagonist to control plant diseases. SATSA Mukhapatra-Anual Technical Issue 21: 206–218.

Langner T & Göhre T. 2016. Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Curr. Genet. 62(2): 243–254. https://doi.org/10.1007/s00294-015-0530-x

Lee YS, Han SS, & Jeong IS. 2002. Taxonomical characteristics of Xylaria spp. collected from Malaysia. Mycobiology. 30(4): 193–196.

Maryono T, Widiastuti A, & Priyatmojo A. 2017. Penyakit busuk akar dan pangkal batang tebu di Sumatera Selatan [Sugarcane root and basal stem rot disease in South Sumatera]. J. Fitopatol. Indones. 13(2): 67–71.

Muhibbudin A, Setiyowati EM, & Sektiono AW. 2021. Mechanism antagonism of Trichoderma viride againts several types of pathogens and productions of secondary metabolites. Agrosaintifika: Jurnal Ilmu-Ilmu Pertanian. 4(1): 243–252.

Nafisah H, Pujiyanto S, & Raharjo B. 2017. Isolasi dan uji aktivitas kitinase isolat bakteri dari kawasan Geotermal Dieng [Isolation and test of chitinase activity of bacterial isolates from Dieng Geothermal area]. Bioma: Berkala Ilmiah Biologi. 19(1): 22–29. https://doi.org/10.14710/bioma.19.1.22-29

Poria V, Rana A, Kumari A, Grewal J, Pranaw K, & Singh S. 2021. Current perspectives on chitinolytic enzymes and their agro-industrial applications. Biology. 10(12): 1319. https://doi.org/10.3390/biology10121319

Qualhato TF, Lopes FAC, Steindorff AS, Brandão RS, Jesuino RSA, & Ulhoa CJ. 2013. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production. Biotechnol Lett. 35(9): 1461–1468. https://doi.org/10.1007/s10529-013-1225-3

Saskiawan I & Handayani R. 2011. Hidrolisis kitin melalui fermentasi semi padat untuk produksi N-asetilglukosamina [Production of N-acetyl-D-glucosamine by submerged fermentation from chitin]. Berita Biologi. 10(6): 721–728.

Sitepu R, Sunaryo, Widyatmoko K, & Purwoko H. 2010. Root and basal stem root disease of sugarcane in Lampung, Indonesia. Proc. Int. Soc. Sugar Cane Technol. 27: 1–6.

Soesanto L, Mugiastuti E, Rahayuniati RF, & Dewi RS. 2013. Uji kesesuaian empat isolat Trichoderma spp. dan daya hambat in vitro terhadap beberapa patogen tanaman [Compatibility test of four Trichoderma spp. isolates and in vitro inhibition ability on several plant pathogens]. J. HPT Tropika. 13(2): 117–123. https://doi.org/10.23960/j.hptt.213117-123

Suanda IW. 2019. Karakterisasi morfologis Trichoderma sp. isolat JB dan daya hambatnya terhadap jamur Fusarium sp. penyebab penyakit layu dan jamur akar putih pada beberapa tanaman [The morphological characterization of Trichoderma sp. isolate JB and its inhibitory power on Fusarium sp. causing wilt desease and white root rot in several plants]. Widya Biologi. 10(2): 99 – 112.

Suanda IW & Ratnadi NW. 2017. Karakterisasi morfologis Trichoderma sp. isolat JB dan daya antagonisme terhadap patogen penyebab penyakit rebah kecambah (Sclerotium rolfsii Sacc.) pada tanaman tomat [Morphological characterization of Trichoderma sp. JB isolate and its antagonism against the pathogen causing damping off disease (Sclerotium rolfsii Sacc.) in tomato plants]. Widyadari, 17 (22): 224–253.

Suryadi Y, Priyatno TP, Samudra IM, Susilowati DN, Lawati N, & Kustaman, E. 2013. Pemurnian parsial dan karakterisasi kitinase asal jamur entomopatogen Beauveria bassiana isolat BB200109 [Partial purification and characterization of chitinase from entomopathogenic fungus Beauveria bassiana isolate BB200109]. Jurnal AgroBiogen. 9(2): 77–84.

Tasik S, Widyastuti SM, & Harjono. 2015. Mekanisme parasitisme Trichoderma harzianum terhadap Fusarium oxysporium pada semai Acacia mangium [Mechanism of parasitism of Trichoderma harzianum on Fusarium oxysporum on Acacia mangium seedlings]. J. HPT Tropika. 15(1): 72–80. https://doi.org/10.23960/j.hptt.11572-80

Verma M, Brar SK, Tyagi RD, Surampalli RY, & Valéro JR. 2007. Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochem. Eng. J. 37(1): 1–20. https://doi.org/10.1016/j.bej.2007.05.012

Wirawan A & Herdyastuti N. 2013. Penetuan waktu inkubasi pada pembentukan senyawa N-asetilglukosamin yang didegradasi secara enzimatis dari kitin [Determination of incubation time on formation of N-acetylglucosamine by enzymatic degradation from chitin]. UNESA Journal of Chemistry. 2(3): 11–13.

Yulianti T. 2017. Perkembangan penyakit lapuk akar dan pangkal batang tebu (Xylaria warbugii) di Sumatera dan strategi pengendaliannya [The development of root and basal stem rots of sugarcane (Xylaria warbugii) in Sumatera and its control strategies]. Perspektif. 16(2): 122–133.

Downloads

Published

2022-03-26
Read Counter : 103 times
PDF Download : 67 times